ON THE EXTREME EIGENVALUES OF TRUNCATED TOEPLITZ MATRICES

BY SEYMOUR V. PARTER

Communicated by Edwin Moise, December 23, 1960

Let $f(\theta)$ be a real-valued Lesbesgue integrable function defined on $[-\pi, \pi]$. Let $\{C_i\}$ be the Fourier coefficients of $f(\theta)$, i.e.,

$$f(\theta) \sim \sum_{-\infty}^{\infty} C_j e^{ij\theta}$$

The matrix $T_n[f] = (C_{s-j})$; s, $j = 0, 1, \dots, n$ is the *n*th finite section of the infinite Toeplitz matrix (C_{s-j}) associated with the function $f(\theta)$.

In this note we are concerned with functions $f(\theta)$ satisfying

CONDITION A. Let $f(\theta)$ be real, continuous and periodic with period 2π . Let min $f(\theta) = f(0) = m$ and let $\theta = 0$ be the only value of $\theta \pmod{2\pi}$ for which this minimum is attained.

CONDITION A(α). Let $f(\theta)$ be a function satisfying condition A. Moreover, let $f(\theta)$ have continuous derivatives of order 2α in some neighborhood of $\theta = 0$. Finally let $f^{(2\alpha)}(0) = \sigma^2 > 0$ be the first nonvanishing derivative of $f(\theta)$ at $\theta = 0$.

THEOREM. Let $f(\theta)$ satisfy conditions A and $A(\alpha)$. Let $\lambda_{r,n}$ ($\nu = 1, 2, \dots, n+1$) be the eigenvalues of $T_n[f]$ arranged in nondecreasing order. For fixed ν , as $n \to \infty$ we have

(1)
$$\lambda_{r,n} = m + \frac{\sigma^2}{(2\alpha)!} \Lambda_r \left(\frac{1}{n}\right)^{2\alpha} + o\left(\frac{1}{n}\right)^{2\alpha},$$

where the numbers Λ , are the eigenvalues arranged in nondecreasing order of

(2)
$$\left[-\left(\frac{d}{dx}\right)^2\right]^a U - \Lambda U = 0, \qquad 0 \leq x \leq 1,$$

with boundary conditions

(2a)
$$\left(\frac{d}{dx}\right)^i U(0) = \left(\frac{d}{dx}\right)^i U(1) = 0, \qquad i = 0, 1, \cdots, \alpha - 1.$$

The case $\alpha = 1$ was studied by Kac, Murdock and Szegö [3]. In [5] Widom also studied the case $\alpha = 1$ and, under suitable conditions, obtained the next term in the asymptotic expansion of $\lambda_{r,n}$. The case $\alpha = 2$ was studied by this author [4].