PROOF OF BLASCHKE'S SPHERE CONJECTURE

BY LEON W. GREEN¹

Communicated by Hans Samelson, October 17, 1960

Let M be a C^2 , compact, orientable two-dimensional Riemannian manifold with positive Gaussian curvature R(x), $x \in M$. Assume that the distance between a point x of M and the first point conjugate to x on any geodesic ray emanating from x is independent of the initial direction and of x. We shall prove the following conjecture of Blaschke:

THEOREM. M has constant curvature.

For a brief history of the problem and a proof under stringent additional conditions see [2].

Let us first recall some of the known facts about such surfaces which we shall use. Proofs may be found in $[1, \S 102]$.

Normalize the conjugate distance so it equals π . Then every geodesic is closed and has length 2π . The mapping of any point into its conjugate point (determined uniquely, independently of the geodesic ray used) is an isometric involution of M onto itself. Any two geodesics intersect in a pair of mutually conjugate points.

Denote the unit tangent bundle of M by T, and set $dK = dAd\phi$, where dA is the element of area on M and $d\phi$ is the differential of angle between unit vectors based at the same point. An element of Twill be denoted by e, or by the pair (x, ϕ) , where ϕ is a fiber coordinate in some local product representation of T; set p(e) = x. The geodesic flow in T takes e after time t into the element e_t , the end point of the lift into the bundle of the geodesic segment of length t whose initial element is e. It is well known that dK, the kinematic density, is invariant under this flow.

LEMMA 1.

$$\int_{T} dK = 8\pi^2.$$

PROOF. Let a closed geodesic G_0 divide M into two domains and call the closure of one of them K_0 . Let G_{ϵ} be the curve swept out by normals to G_0 , pointing a distance ϵ into K_0 . For sufficiently small

¹ This work was supported by a grant of the National Science Foundation. The author wishes to thank J. Adem for first calling this problem to his attention and C. M. Petty for sending him the report [4].