A NEW CLASS OF SPECTRAL OPERATORS¹

BY H. H. SCHAEFER

Communicated by W. S. Massey, October 14, 1960

Let X be an ordered (= partially ordered) complex Banach space (cf. [3, §6]). The positive cone $K = \{x: x \ge 0\}$ in X is normal if there exists $\gamma > 0$ such that $||x+y|| \ge \gamma ||y||$ for all x, $y \in K$. We say that a complex B-algebra A (with unit e) is ordered if the underlying B-space is ordered with K closed and normal, and if K, in addition, has these properties: (i) $e \in K$; (ii) $a \in K$, $b \in K$ and ab = ba imply $ab \in K$ (cf. [3, §11]). We shall write, as usual, $x \le y$ (or $y \ge x$) for $y - x \in K$, and $[x, y] = \{z: x \le z \le y\}$. The term "semi-complete" stands for "sequentially complete." For any $a \in A$, $\sigma(a)$ denotes the spectrum of a. A function μ from the Borel sets of the real line R into A is a Borel measure if μ is countably additive, i.e., if $\mu(\bigcup_1^{\infty} \delta_n) = \sum_1^{\infty} \mu(\delta_n)$ converges in A for an arbitrary sequence $\{\delta_n\}$ of mutually disjoint Borel sets.

THEOREM 1. Let A be an ordered B-algebra, such that [0, e] is weakly semi-complete. Let $c_1 e \leq a \leq c_2 e$ where $c_1, c_2 \in \mathbb{R}$. Then $\sigma(a) \subset [c_1, c_2]$, and there exists an A-valued Borel measure μ such that

$$a^n = \int_{\sigma(a)} t^n d\mu, \qquad (n = 0, 1, 2, \cdots).$$

Moreover, μ is a homomorphism of the Boolean σ -algebra of real Borel sets onto a Boolean σ -algebra of idempotents contained in [0, e], and

$$f \to \int_{\sigma(a)} f d\mu$$

is an order preserving homomorphism of the algebra of bounded Borel functions on $\sigma(a)$, into A.

If A is a (Banach) algebra of bounded operators on a B-space X, then an $a \in A$ satisfying the assertions of Theorem 1 is a (scalar type) spectral operator in the sense of Dunford [1]. We obtain from Theorem 1:

THEOREM 2. Let A be an ordered B-algebra of operators on a weakly semi-complete B-space X. Then every operator a which is contained in the real linear hull of [0, e] is a scalar type spectral operator, $a = \int \lambda d\mu$, with real spectrum $\sigma(a)$, and μ is a spectral measure with values in [0, e].

¹ Research sponsored by the Office of Ordnance Research, U. S. Army.