ON A HOMOMORPHISM BETWEEN GENERALIZED GROUP ALGEBRAS

BY ALVIN HAUSNER

Communicated by Edwin Hewitt, September 26, 1960

If $G = \{a, b, \dots\}$ is a locally compact abelian group and X $= \{x, y, \dots\}$ a complex commutative Banach algebra, we denote by B(G, X) the generalized group algebra in the sense of [1; 2]. An X-valued function g defined over G is in B(G, X) if g is strongly measurable and Bochner integrable with respect to Haar measure over G. We define $\|g\|_{B(G,X)} = \int_G |g(a)|_X da$ and, with convolution as multiplication, B(G, X) is a complex commutative B-algebra. In [1, p. 1606], it is shown that the space $\mathfrak{M}(B)$ of regular maximal ideals in B(G, X) is homeomorphic with $\hat{G} \times \mathfrak{M}(X)$. Here, $\hat{G} = \{\hat{a}, \hat{b}, \cdots\}$ is the character group of G and $\mathfrak{M}(X)$ denotes the space of regular maximal ideals in X, both in their usual topologies. If ϕ_M is the canonical homomorphism of X onto the complex numbers associated with an $M \in \mathfrak{M}(X)$, then a function $g \in B(G, X)$ is represented on $\mathfrak{M}(B)$ by the function $\hat{g}(\hat{a}, M) = \int_{G} \phi_{M} g(a)(a, \hat{a}) da$, [1, p. 1604]. If $f \in L(G)$, $x \in X$, then fx shall denote the function (fx)(a) = f(a)x almost everywhere over G. Clearly $fx \in B(G, X)$. Further, finite linear combinations of functions of the type fx with $f \in L(G)$, $x \in X$ are dense in B(G, X).

In this paper we propose to characterize the homomorphisms T from B(G, X) into B(G, X') which are such that T keeps L(G) "pointwise invariant." More precise statements will be found in the theorems below.

We begin with

THEOREM 1. Let G be a group such that \hat{G} is connected and let X and X' be commutative B-algebras with identities e, e' respectively. Suppose $\mathfrak{M}(X)$ is totally disconnected and X' is semi-simple. Let $T: B(G, X) \rightarrow B(G, X')$ be a continuous homomorphism such that T(fe) = fe' for any $f \in L(G)$. Then there exists a continuous homomorphism $\sigma: X \rightarrow X'$ such that $(Tg)(a) = \sigma g(a)$ for any $g \in B(G, X)$.

PROOF.¹ If $g' \in B(G, X')$ and g' is represented on its space of maximal ideals $\hat{G} \times \mathfrak{M}(X')$ as $\hat{f} \cdot \phi'$ where $f \in L(G)$ and ϕ' is a function defined on $\mathfrak{M}(X')$, then g' = fx' for some $x' \in X'$. (Here, $\hat{f}(\hat{a}) = \int_{G} f(\hat{a})(a, \hat{a}) da$.) For, consider the function F from G to X' given

¹ The author wishes to gratefully thank the referee of [1] for suggesting the following proof.