ON A HOMOMORPHISM BETWEEN GENERALIZED GROUP ALGEBRAS

BY ALVIN HAUSNER
Communicated by Edwin Hewitt, September 26, 1960

If $G=\{a, b, \cdots\}$ is a locally compact abelian group and X $=\{x, y, \cdots\}$ a complex commutative Banach algebra, we denote by $B(G, X)$ the generalized group algebra in the sense of $[1 ; 2]$. An X-valued function g defined over G is in $B(G, X)$ if g is strongly measurable and Bochner integrable with respect to Haar measure over G. We define $\|g\|_{B(G, X)}=\int_{G}|g(a)|_{X} d a$ and, with convolution as multiplication, $B(G, X)$ is a complex commutative B-algebra. In [1, p. 1606], it is shown that the space $\mathfrak{M}(B)$ of regular maximal ideals in $B(G, X)$ is homeomorphic with $\hat{G} \times \mathfrak{M}(X)$. Here, $\hat{G}=\{\hat{a}, \hat{b}, \cdots\}$ is the character group of G and $\mathfrak{M}(X)$ denotes the space of regular maximal ideals in X, both in their usual topologies. If ϕ_{M} is the canonical homomorphism of X onto the complex numbers associated with an $M \in \mathfrak{M}(X)$, then a function $g \in B(G, X)$ is represented on $\mathfrak{M}(B)$ by the function $\hat{\mathrm{g}}(\hat{a}, M)=\int_{G} \phi_{M} g(a)(a, \hat{a}) d a$, [1, p. 1604]. If $f \in L(G)$, $x \in X$, then $f x$ shall denote the function $(f x)(a)=f(a) x$ almost everywhere over G. Clearly $f x \in B(G, X)$. Further, finite linear combinations of functions of the type $f x$ with $f \in L(G), x \in X$ are dense in $B(G, X)$.

In this paper we propose to characterize the homomorphisms T from $B(G, X)$ into $B\left(G, X^{\prime}\right)$ which are such that T keeps $L(G)$ "pointwise invariant." More precise statements will be found in the theorems below.

We begin with
Theorem 1. Let G be a group such that \hat{G} is connected and let X and X^{\prime} be commutative B-algebras with identities e, e^{\prime} respectively. Suppose $\mathfrak{M}(X)$ is totally disconnected and X^{\prime} is semi-simple. Let $T: B(G, X)$ $\rightarrow B\left(G, X^{\prime}\right)$ be a continuous homomorphism such that $T(f e)=f e^{\prime}$ for any $f \in L(G)$. Then there exists a continuous homomorphism $\sigma: X \rightarrow X^{\prime}$ such that $(T g)(a)=\sigma g(a)$ for any $g \in B(G, X)$.

Proof. ${ }^{1}$ If $g^{\prime} \in B\left(G, X^{\prime}\right)$ and g^{\prime} is represented on its space of maximal ideals $\hat{G} \times \mathfrak{M}\left(X^{\prime}\right)$ as $\hat{f} \cdot \phi^{\prime}$ where $f \in L(G)$ and ϕ^{\prime} is a function defined on $\mathfrak{M}\left(X^{\prime}\right)$, then $g^{\prime}=f x^{\prime}$ for some $x^{\prime} \in X^{\prime}$. (Here, $\hat{f}(\hat{a})$ $=\int_{\sigma} f(\hat{a})(a, \hat{a}) d a$.) For, consider the function F from G to X^{\prime} given

[^0]
[^0]: ${ }^{1}$ The author wishes to gratefully thank the referee of [1] for suggesting the following proof.

