SPECTRAL OPERATORS ON LOCALLY CONVEX SPACES

BY C. IONESCU TULCEA

Communicated by Walter Rudin, September 12, 1960

1. Let C be the complex plane, S(C) the tribe of all Borel parts of C, $B^{\infty}(C)$ the algebra of bounded complex-valued Borel measurable functions defined on C and $M^1(C)$ the set of bounded complex Radon measures on C. Let E be a locally convex space which is separated, quasi-complete and barrelled. A family $\mathfrak{F}=(m_{x,x'})_{x\in E,x'\in E'}$ of measures belonging to $M^1(C)$ is called a spectral family on C if there exists a representation $f \rightarrow U_{\mathfrak{F},f}$ of the algebra $B^{\infty}(C)$ into the algebra L(E, E) mapping 1 onto I and satisfying the equations $\int_C f dm_{x,x'} = \langle U_{\mathfrak{F},f}x, x' \rangle$ for all $f \in B^{\infty}(C)$, $x \in E$, $x' \in E'$. By $P_{\mathfrak{F}}$ we denote the spectral measure defined on S(C) by the equations $P_{\mathfrak{F}}(\sigma) = U_{\mathfrak{F},\phi_{\sigma}}(\phi_{\sigma})$ is the characteristic function of σ . A linear mapping T of (the vector space) $D_T \subset E$ into E commutes with \mathfrak{F} if $TU_{\mathfrak{F},f} \supset U_{\mathfrak{F},f}T$ for all $f \in B^{\infty}(C)$.

Let T be a linear mapping of $D_T \subset E$ into E. We say that $\lambda \in \hat{C}$ (=the one point compactification of C) belongs to the resolvent set r(T) of T if there is a neighborhood V of λ such that: (i) zI - T is a one-to-one mapping of D_T onto E and $(zI - T)^{-1} \in L(E, E)$ for each $z \in V - \{\infty\}$; (ii) $\{(zI - T)^{-1} | z \in V - \{\infty\}\}$ is a bounded part of L(E, E). The set $\operatorname{sp}(T) = \hat{C} - r(T)$ is the spectrum of T. If $\operatorname{sp}(T) \ni \infty$ we say that T is regular.

By an *admissible* set we mean a directed (for \subset) set of closed parts of C whose union is C, having a countable cofinal part and containing with $A \subset C$ every closed part of A. We denote below by \mathfrak{C}_0 and \mathfrak{C}_1 the admissible set of all compact parts of C and all closed parts of C, respectively. Let \mathfrak{C} be an admissible set and T a closed linear mapping of $D_T \subset E$ into E. We say that T is a \mathfrak{C} -spectral operator if there is a spectral family \mathfrak{F} on C such that:

- (D_I) T commutes with \mathfrak{F} ;
- (D_{II}) $TU_{\mathfrak{F},f} \in L(E,E)$ for each $f \in B^{\infty}(C)$ whose support is compact and belongs to \mathfrak{C} ;
 - (D_{III}) sp(T_{σ}) $\subset \sigma^{-}$ for every $\sigma \in \mathfrak{C}$.

¹ E barrelled means that every weakly bounded part of the dual space E' is equicontinuous; E quasi-complete means that every bounded closed part of E is complete. L(E, E) is the algebra of all linear continuous mappings of E into E endowed with the topology of uniform convergence on the bounded parts of E.

² For a set $A \subseteq C$ we denote by A^- the closure of A in \widehat{C} .