# DIFFERENTIABLE IMBEDDINGS 

BY ANDRÉ HAEFLIGER ${ }^{1}$<br>Communicated by Edwin H. Spanier, September 8, 1960

1. Terminology. $V^{n}$ and $M^{m}$ will be differentiable manifolds of dimension $n$ and $m$ respectively; differentiable meaning always of class $C^{\infty}$. For simplicity, we assume $V$ compact and without boundary.

We shall have to consider several categories of maps:
(1) the category of continuous maps,
(2) the category of topological imbeddings,
(3) the category of topological immersions: a map $f: V \rightarrow M$ is a topological immersion of $V$ in $M$ if the restriction of $f$ to some neighborhood of each point of $V$ is an imbedding,
(4) the category of differentiable immersions: $\operatorname{a~map} f: V \rightarrow M$ belongs to this category if $f$ is differentiable of rank $n=\operatorname{dim} V$ everywhere,
(5) the category of differentiable imbeddings: a differentiable imbedding $f: V \rightarrow M$ is a topological imbedding which is also a differentiable immersion.

Two maps $f_{0}, f_{1}: V \rightarrow M$ in one of the preceding categories are said to be homotopic in this category, if there exists a map $F: V \times R \rightarrow M$ (called a homotopy from $f_{0}$ to $f_{1}$ ) such that $F\left|V \times\{0\}=f_{0}, F\right| V \times\{1\}$ $=f_{1}$ and the associated $\operatorname{map}(x, t) \rightarrow(F(x, t), t)$ of $V \times R$ in $M \times R$ belongs to the given category.

A homotopy in the category of differentiable imbeddings is also called a differentiable isotopy (cf. [4]).
2. Existence theorem. Many results have been obtained recently in the combinatorial case (cf. $[2 ; 3 ; 10 ; 12 ; 13]$ ).

The following theorem is in some sense a generalization of Whitney's theorems (cf. [6; 8]) and Wu's theorem (cf. [11]) and the differentiable analogues of the above results.

A space $X$ is $q$-connected ( $q$ an integer) if its homotopy groups vanish in dimension less or equal to $q$ (for $q<0$, the condition is empty; for $q=0, X$ is connected; for $q=1, X$ is connected and simply connected, and so on).

Theorem 1. Let $V^{n}$ and $M^{m}$ be two differentiable manifolds which are respectively $(k-1)$-connected and $k$-connected. Then
(a) Any continuous map of $V$ in $M$ is homotopic to a differentiable

[^0]
[^0]:    ${ }^{1}$ Supported by National Science Foundation contract G-10700.

