ON A PROBLEM OF KLEENE'S

BY R. O. GANDY

Communicated by S. C. Kleene, August 18, 1960

THEOREM I.¹ The class of functions of hyperdegree strictly less than 0' provides a basis for the predicate $(E\alpha)(x)\overline{T}_1^1(\bar{\alpha}(x), a, a)$, and hence for all predicates which belong to Σ_1^1 .

This theorem settles a problem left open by Kleene in [4]. To prove it we observe that Theorem XXVI of [3] relativises uniformly to an arbitrary function α (see Theorem XXVII of [3]). Thus there is a recursive K(u, v) such that:

- (i) $(\alpha)(E\beta)(x)K(\bar{\alpha}(x), \bar{\beta}(x));$
- (ii) $(\alpha)(\beta)_{\beta\in HA(\alpha)}(\bar{x})K(\bar{\alpha}(x), \bar{\beta}(x)),$

where $HA(\alpha)$ denotes the class of functions hyperarithmetic in α .

Suppose a satisfies the predicate $(E\alpha)(x)\overline{T}_1^1(\bar{\alpha}(x), a, a)$; then, by (i), there exist functions α , β such that

(A)
$$(x)\overline{T}_1(\overline{\alpha}(x), a, a) \& (x)K(\overline{\alpha}(x), \overline{\beta}(x)).$$

And we can construct such functions recursively in O (cf. 5.5 (5) of [5]). But if $O \in HA(\alpha)$ then also $\beta \in HA(\alpha)$, which would contradict (ii). Hence there is an α of hyperdegree strictly less than **0'** such that $(x)\overline{T}_1^1(\bar{\alpha}(x), a, a)$; and this proves the theorem.²

By an obvious elaboration of the above argument we can construct, recursively in O, an infinite sequence of non-hyperarithmetic functions α_i such that $\alpha_1 \ll \alpha_0$, $\alpha_2 \ll \alpha_0 \cup \alpha_1$, \cdots (where bold face type denotes a hyperdegree). Thus we can prove

COROLLARY 1. There are infinitely many distinct hyperdegrees lying between 0 and 0'.

COROLLARY 2.³ If a Π_1^1 set of axioms for second-order arithmetic has an ω -model, then it has an ω -model whose functions are all of hyperdegree strictly less than $\mathbf{0}'$.

¹ For notations used see [2; 3; 6]; in particular we use boldface type for hyperdegrees. 0' is the hyperdegree of O.

² G. Kreisel points out that a similar construction may be used to prove a result of J. R. Shoenfield's (*Degrees of models*, Amer. Math. Soc. Notices vol. 6 (1959) p. 530): the functions whose degree is strictly less than the degree 0' provide a basis for Σ_1 predicates in which the existential function quanfiier is bounded by a given recursive function. I am also indebted to Kreisel for suggesting Corollary 2 below.

⁸ By a " Π_1^1 set of axioms" we mean a set of formulae whose Gödel numbers form a Π_1^1 set. An " ω -model" is a model which is standard with respect to the natural numbers.