COMBINATORIAL TOPOLOGY OF AN ANALYTIC FUNCTION ON THE BOUNDARY OF A DISK

BY CHARLES J. TITUS
Communicated by Edwin Moise, August 12, 1960

Preliminaries. A complex valued function $\zeta(t)$ defined on an oriented circle S of circumference c, t the usual distance parameter, $0 \leqq t<c$, is a regular representation if it possesses a continuous nonvanishing derivative $\zeta^{\prime}(t)$. An image point ζ_{0} is a simple crossing point if there exist exactly two distinct numbers t_{0}^{\prime} and $t_{0}^{\prime \prime}$ such that $\zeta\left(t_{0}^{\prime}\right)=\zeta\left(t_{0}^{\prime \prime}\right)=\zeta_{0}$ and if the tangents $\zeta^{\prime \prime}\left(t_{0}^{\prime}\right)$ and $\zeta^{\prime}\left(t_{0}^{\prime \prime}\right)$ are linearly independent. A regular representation is normal (Whitney) if it has a finite number of simple crossing points and has for every other image point ζ but one preimage point t. A pair of representations $\tilde{\zeta}$ and ζ are topologically equivalent if there exists a sense-preserving homeomorphism h of S onto S such that $\tilde{\zeta}=\zeta \circ h$.

A mapping F of a disk $D,|z|<R$, is open if, for every open set U in $D, F(U)$ is open in the plane; F is light if the preimage of each image point is totally disconnected; F is properly interior on \bar{D}, $|z| \leqq R$, if F is continuous on $\bar{D}, F \mid$ bdy D is locally topological, F is sense-preserving, light and open on D. It can be shown (using results of Carathéodory, Stoilow, Whyburn) that given a properly interior mapping F there exists an analytic function W on D that is locally topological near and on bdy D and there exists a sense-preserving homeomorphism H of \bar{D} onto \bar{D} such that $F=W \circ H$.

A representation ζ will be called an interior boundary [analytic boundary] if ζ is locally topological and if there exists a properly interior mapping F [an analytic function W that is locally topological near and on bdy $D]$ such that $F\left(R e^{i t}\right) \equiv \zeta(t)\left[W\left(R e^{i t}\right) \equiv \zeta(t)\right]$. Thus, every interior boundary is topologically equivalent to an analytic boundary.

The problem probably first arose in the study of the SchwartzChristoffel mapping function (Schwartz, Schlaefli, Picard) and, in this context, was formulated essentially as follows.

Let $Z_{0}, Z_{1}, \cdots, Z_{n-1}$ be a sequence of n-distinct complex numbers which are in general position. By connecting these points consecutively from Z_{k} to $Z_{k+1}, \bmod n$, a closed oriented polygon is formed. Let $\alpha_{k} \pi$ be the angle from $Z_{k}-Z_{k-1}$ to $Z_{k+1}-Z_{k}$ with $-1<\alpha_{k}<1$. Then for any set of n real number and any complex number $A \neq 0$ the function

