COMMUTATIVE SUBGROUPS AND TORSION IN COMPACT LIE GROUPS

BY ARMAND BOREL
Communicated by Deane Montgomery, April 26, 1960

In this note, G is a compact connected Lie group. We are concerned with the torsion of the cohomology ring $H^{*}(G ; Z)$ of G over the integers, certain commutative subgroups of G, and relations between these two questions.

Notation. $E\left(m_{1}, \cdots, m_{r}\right)$ or $E_{A}\left(m_{1}, \cdots, m_{r}\right)$ denotes the exterior algebra over the ring A of a free A-module with r generators of respective degrees $m_{1}, \cdots, m_{r} ; p$ is a prime number, Z_{p} the field of integers $\bmod p, Q$ the field of rational numbers. Tors H is the torsion subgroup of a group H, ord M the order of a finite group M. The identity component of a closed subgroup H if G is denoted by H_{0}, if L is a subset of G, its centralizer in G is denoted by $Z(L)$.

1. H-spaces with finitely generated cohomology groups. In this section, X is a compact connected H-space, for which $H^{*}(X ; Z)$ is finitely generated. As is known $H^{*}(X ; Q)=E\left(m_{1}, \cdots, m_{r}\right)$ with m_{i} odd; we assume $m_{i} \leqq m_{j}$ if $i \leqq j$. With this notation we have

Proposition 1.1. (a) $H^{*}(X ; Z) /$ Tors $H^{*}(X ; Z)=E_{Z}\left(m_{1}, \cdots, m_{r}\right)$. (b) Let p be odd and K be a field of characteristic p. Then $H^{*}(X ; K)$ contains a subalgebra isomorphic to $E_{K}\left(m_{1}, \cdots, m_{r}\right)$. Each system of generators of type (M) of $H^{*}(X ; K)$ (in the sense of $\left.[2, \S 6]\right)$ contains at least r elements of odd degrees.

Let $H=H^{*}(X ; Z) /$ Tors $H^{*}(X ; Z)$. The transpose of the product map induces a homomorphism $H \rightarrow H \otimes H$ satisfying the conditions imposed on a Hopf algebra over Z. Hence $H \otimes A$ is a Hopf algebra over A for any ring A. Then (a) follows from the structure theorem [2, Théorème 6.1] applied to $H \otimes L, L$ being a field, by an easy induction. (b) follows from (a), the structure theorem, and the fact that the product of the generators of $E_{K}\left(m_{1}, \cdots, m_{r}\right)$ is nonzero.

Proposition 1.2. Let p be odd. Assume that each element of $H^{*}\left(X ; K_{p}\right)$ has height $\leqq p$ (in the sense of $[2, \S 6]$) and that X is simply connected. Let k be the first integer such that $H^{k}(X ; Z)$ has p-torsion. Then $p \cdot k$ $\leqq m_{r}+p-1$.

This may be proved using the spectral sequence connecting $H^{*}\left(X ; Z_{p}\right)$ to $H^{*}(X ; Z) /$ Tors $H^{*}(X ; Z) \otimes Z_{p}$, whose differentials are the successive Bockstein operators. This result is sufficient for the

