AN ARITHMETICAL INVERSION PRINCIPLE

BY ECKFORD COHEN

Communicated by G. B. Huff, July 6, 1959
Let $f(n, r)$ represent an even function of $n(\bmod r)$; that is, $f(n, r)$ $=f((n, r), r)$ for all integers n and a positive integral variable r. The following inversion relation is proved in [2]. If $r=r_{1} r_{2}$ and $f(n, r)$ is even $(\bmod r)$, then

$$
\begin{equation*}
g\left(r_{1}, r_{2}\right)=\sum_{d \mid r_{1}} f\left(\frac{r_{1}}{d}, r\right) \mu(d) \rightleftarrows f(n, r)=\sum_{d \mid r} g\left(d, \frac{r}{d}\right), \tag{1}
\end{equation*}
$$

where $\mu(r)$ denotes the Möbius function. This relation can be easily verified on the basis of the definition of even function $(\bmod r)$ and the characteristic property of $\mu(r)$,

$$
\sum_{d \mid r} \mu(d)=\epsilon(r) \equiv \begin{cases}1 & (r=1) \tag{2}\\ 0 & (r>1)\end{cases}
$$

We now state a generalization of (1). Let $\xi(r)$ and $\eta(r)$ be arithmetical functions satisfying

$$
\begin{equation*}
\sum_{d \delta=r} \xi(d) \eta(\delta)=\epsilon(r) \tag{3}
\end{equation*}
$$

The following theorem can be proved in the same manner as (1), with (3) used in place of (2).

Theorem 1. If $r=r_{1} r_{2}$ and $f(n, r)$ is even $(\bmod r)$, then

$$
\begin{equation*}
g\left(r_{1}, r_{2}\right)=\sum_{d \mid r_{1}} f\left(\frac{r_{1}}{d}, r\right) \eta(d) \rightleftarrows f(n, r)=\sum_{d \delta=(n, r)} g\left(d, \frac{r}{d}\right) \xi(\delta) \tag{4}
\end{equation*}
$$

Clearly (4) reduces to (1) in case $\xi(r)=1, \eta(r)=\mu(r)$. The case $\xi(r)=\mu(r), \eta(r)=1$ yields the following dual of (1).

Theorem 2. If $r=r_{1} r_{2}$ and $f(n, r)$ is even $(\bmod r)$, then

$$
\begin{equation*}
g\left(r_{1}, r_{2}\right)=\sum_{d \mid r_{1}} f\left(\frac{r_{1}}{d}, r\right) \rightleftarrows f(n, r)=\sum_{d \delta=(n, r)} g\left(d, \frac{r}{d}\right) \mu(\delta) \tag{5}
\end{equation*}
$$

An immediate consequence of Theorem 2 is
Corollary 2.1. For every arithmetical function $g\left(r_{1}, r_{2}\right)$ of two positive integral variables r_{1}, r_{2}, there exists a uniquely determined even function $(\bmod r), f(n, r)$, such that $g\left(r_{1}, r_{2}\right)$ is expressible as a divisor sum (5) with respect to $f(n, r)$.

