AN ARITHMETICAL INVERSION PRINCIPLE

BY ECKFORD COHEN

Communicated by G. B. Huff, July 6, 1959

Let f(n, r) represent an even function of $n \pmod{r}$; that is, f(n, r) = f((n, r), r) for all integers n and a positive integral variable r. The following inversion relation is proved in [2]. If $r = r_1 r_2$ and f(n, r) is even (mod r), then

(1)
$$g(r_1, r_2) = \sum_{d \mid r_1} f\left(\frac{r_1}{d}, r\right) \mu(d) \rightleftharpoons f(n, r) = \sum_{d \mid r} g\left(d, \frac{r}{d}\right),$$

where $\mu(r)$ denotes the Möbius function. This relation can be easily verified on the basis of the definition of even function (mod r) and the characteristic property of $\mu(r)$,

(2)
$$\sum_{d|r} \mu(d) = \epsilon(r) \equiv \begin{cases} 1 & (r = 1), \\ 0 & (r > 1). \end{cases}$$

We now state a generalization of (1). Let $\xi(r)$ and $\eta(r)$ be arithmetical functions satisfying

(3)
$$\sum_{d\delta=r} \xi(d)\eta(\delta) = \epsilon(r).$$

The following theorem can be proved in the same manner as (1), with (3) used in place of (2).

THEOREM 1. If $r = r_1r_2$ and f(n, r) is even (mod r), then

(4)
$$g(r_1, r_2) = \sum_{d \mid r_1} f\left(\frac{r_1}{d}, r\right) \eta(d) \rightleftharpoons f(n, r) = \sum_{d \mid \delta = (n, r)} g\left(d, \frac{r}{d}\right) \xi(\delta).$$

Clearly (4) reduces to (1) in case $\xi(r) = 1$, $\eta(r) = \mu(r)$. The case $\xi(r) = \mu(r)$, $\eta(r) = 1$ yields the following dual of (1).

THEOREM 2. If $r = r_1r_2$ and f(n, r) is even (mod r), then

(5)
$$g(r_1, r_2) = \sum_{d \mid r_1} f\left(\frac{r_1}{d}, r\right) \rightleftharpoons f(n, r) = \sum_{d\delta = (n, r)} g\left(d, \frac{r}{d}\right) \mu(\delta).$$

An immediate consequence of Theorem 2 is

COROLLARY 2.1. For every arithmetical function $g(r_1, r_2)$ of two positive integral variables r_1 , r_2 , there exists a uniquely determined even function (mod r), f(n, r), such that $g(r_1, r_2)$ is expressible as a divisor sum (5) with respect to f(n, r).