CIRCUMSCRIBED CUBES IN EUCLIDEAN n-SPACE

BY S. S. CAIRNS

Communicated by R. H. Bing, May 20, 1959

Let E^{n} be a euclidean n-space with a rectangular cartesian coordinate system $(x)=\left(x_{1}, \cdots, x_{n}\right)$, and let (y) be any system which is a rotation of (x). Let $A \subset E^{n}$ be a closed bounded set containing $n+1$ linearly independent points. Its circumscribed (y)-box is the set $a_{i} \leqq y_{i} \leqq b_{i}(i=1, \cdots, n)$ where a_{i} and b_{i} are the respective minimum and maximum values of y_{i} on A. Let $c_{i}=b_{i}-a_{i}$ be interpreted as a function on the space R_{n-1} of rotations of coordinate systems, which is also the rotation space of the unit ($n-1$)-sphere $S^{n-1} \subset E^{n}$.

Let $f: R_{n-1} \rightarrow E^{n}$ be the function which maps $r \in R_{n-1}$ onto the point ($\left.c_{1}(r), \cdots, c_{n}(r)\right)$, relative to the fixed initial coordinate system (x). Let D be the diagonal $x_{1}=\cdots=x_{n}$ in E^{n}. The circumscribed (y)-box corresponding to a point $r \in R_{n-1}$ is an n-cube if and only if $f(r) \in D$. Accordingly, $K=f^{-1}(D)$, a subspace of R_{n-1}, will be called the space of circumscribed n-cubes of A. Its structure can be studied by means of the mapping f. For the purpose of this study the significant properties are as follows: (1) f is a continuous mapping of R_{n-1} into the region $x_{i}>0(i=1, \cdots, n)$ of $E^{n}(2) f\left(R_{n-1}\right)$ is symmetric with respect to D. This second property follows from the fact that all possible permutations of axial directions can be achieved in a symmetric way through rotations. There is no need to distinguish between the two possible senses on a given y_{i}-direction, since the value of c_{i} is the same for both. Hence, one gets odd as well as even permutations of the c 's.

Let T^{n-1} be the simplex in E^{n} with vertices at the unit points on the (x)-axes. A central projection from the origin carries the mapping f into a continuous mapping $g: R_{n-1} \rightarrow T^{n-1}$ where $g\left(R_{n-1}\right)$ is symmetric in the barycentric coordinates on T^{n-1}. The inverse image $g^{-1}(q)$, where q is the barycenter of T^{n-1}, is identical with $f^{-1}(D)=K$. This leads to the following result.

Theorem. The space of circumscribed cubes of a closed subset of euclidean n-space containing $n+1$ independent points is the inverse image $K=g^{-1}(q)$ of the center of an $(n-1)$-simplex T^{n-1} under a continuous mapping $g: R_{n-1} \rightarrow T^{n-1}$, where R_{n-1} is the rotation space of an ($n-1$)-sphere and where $g\left(R_{n-1}\right)$ is symmetric in the barycentric coordinates on T^{n-1}.

Any particular circumscribed n-cube is the (y)-cube for a system (y) obtainable from (x) without rotating any axis by more than

