RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

ON THE INITIAL VALUE PROBLEM FOR PARABOLIC SYSTEMS OF DIFFERENTIAL EQUATIONS¹

BY D. G. ARONSON

Communicated by Paul C. Rosenbloom, June 9, 1959

1. Introduction. We consider the matrix linear differential operator

$$L \equiv P(x, y; D) - E \frac{\partial}{\partial y}$$

for $x = (x_1, \dots, x_n) \in E^n$ and $y \in [y', y'']$, where E is the $N \times N$ identity matrix,

$$P(x, y; D) = \left(\sum_{|k| \leq 2b} A_{ij}^{(k)}(x, y) D^{k}\right) [i, j = 1, \cdots, N; b \geq 1 \text{ an integer}],$$

 $(k) = (k_1, \dots, k_n)$ for non-negative integers k_j , $|k| = \sum_{j=1}^n k_j$, and $D^k = \partial^{|k|} / \partial x_1^{k_1} \cdots \partial x_n^{k_n}$. We will use D^m to denote an arbitrary D^k with |k| = m. Following Petrovskii [6], we say that L is uniformly parabolic in $R = E^n \times [y', y'']$ if there exists a constant $\delta > 0$ such that all of the roots $\lambda = \lambda(x, y, \sigma)$ of

$$\det \left\{ \left(\sum_{|k|=2b} A_{ij}^{(k)}(x, y)(i\sigma)^k \right) - \lambda E \right\} = O\left[(i\sigma)^k = \prod_{j=1}^n (i\sigma_j)^{k_j} \right]$$

satisfy Re $\lambda(x, y, \sigma) < -\delta$ for all $(x, y) \in R$ and real σ such that $\sum_{j=1}^{n} \sigma_j^2 = 1$. We assume throughout this paper that: (i) *L* is uniformly parabolic in *R* and (ii) the coefficients $A_{ij}^{(k)}(x, y)$ of *L* are bounded uniformly continuous functions of *y* and satisfy a uniform Hölder condition (with exponent α , $0 < \alpha \leq 1$) with respect to *x* in *R*. Our main result is a uniqueness theorem for the solution of the initial value problem (i.v.p.)

(1.1)
$$Lu = f(x, y)$$
 in $E^n \times (t, y''];$ $u(x, t) = g(x)$

¹ This work supported (in part) by the Office of Naval Research under Contract Nonr-710(16); (NR 043 041).