NORMAL OPERATORS ON THE BANACH SPACE $L^{p}(-\infty, \infty)$ PART I. BOUNDED OPERATORS¹

GREGERS L. KRABBE

Communicated by Einar Hille, April 9, 1959

1. Introduction. Let \mathfrak{B} denote the Boolean ring generated by the semi-closed intervals of the plane. We denote by \mathfrak{E}_p the algebra of all linear bounded transformations of $L^p(-\infty, \infty)$ into itself. Suppose for a moment that p=2, and let \mathfrak{A}_p be an involutive abelian sub-algebra of \mathfrak{E}_p : if \mathfrak{A}_p is also a Banach space and if $T_p \in \mathfrak{A}_p$, then

(i) the family of all homomorphic mappings of the ring \mathfrak{B} into the algebra \mathfrak{S}_p contains a member E_p^T such that

(1)
$$T_p = \int \lambda \cdot E_p^T(d\lambda).$$

Suppose henceforth that 1 . To which extent does the preceding situation carry over?

Let \mathfrak{D} be the class of all bounded functions whose real and imaginary parts are piecewise monotone. In §2 will be defined an isomorphism $f \rightarrow \wedge (f)_p$ whose domain includes \mathfrak{D} and whose range $(t)_p$ is a normed² involutive abelian subalgebra of \mathfrak{E}_p . Our main theorem (§3) shows that a member T_p of $(t)_p$ has the property (i) whenever $T_p = \wedge (f)_p$ for some f in \mathfrak{D} . The relation (1) involves a Stieltjes integral defined in the strong operator-topology whenever $p \ge 2$. The set-function E_p^T need not be countably additive: we do not restrict ourselves to "spectral resolutions" in the sense of Dunford (however, condition (ii) in [1, p. 219] is satisfied if B and E are replaced by our \mathfrak{B} and E_p^T). The values of E_p^T are self-adjoint [2, p. 22] idempotent members of $(t)_p$.

It is easily seen that the Hilbert transformation and the Dirichlet operators all have the property (i). For less trivial examples, let \mathfrak{M}^1 be the set of all bounded Radon measures on $(-\infty, \infty)$; if $A \in \mathfrak{M}^1$, then the convolution operator A_{*p} is defined as the mapping $x \rightarrow A * x$ of $L^p(-\infty, \infty)$ into itself. In case the Fourier transform of A belongs to \mathfrak{D} , then the operator $T_p = A_{*p}$ has the property (i). Consequently,

¹ This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under Contract No. AF 49(638)-505.

² In the terminology of Neumark [5, p. 110]: the normed ring $(t)_p$ has an isometric involution, and its completion is a (*)-algebra [2, p. 22].