THE COHOMOLOGY OF COVERING SPACES OF *H*-SPACES

BY WILLIAM BROWDER

Communicated by S. Bochner, February 18, 1959

In this note, the cohomology of a covering space of an H-space is computed, in terms of the cohomology of the H-space, for coefficients in a field. If the characteristic of the field is different from 2, we also calculate the ring structure.

Let X be an arcwise connected space with a continuous multiplication with unit (an H-space). We will suppose that $H^{q}(X; Z_{p})$ is finite dimensional for each q (singular cohomology will be used throughout). Let \overline{X} be a covering space of $X, \pi: \overline{X} \to X$ the covering map, G the group of deck translations of \overline{X} over X, i.e. the fibre of π . Then \overline{X} can be given an H-space structure so that π is a multiplicative map.

Let us consider the spectral sequence of Leray-Cartan for this covering space. We can obtain it by replacing X by a homotopically equivalent space (again denoted by X) which is a fibre space over K(G, 1) with fibre \overline{X} , the inclusion of \overline{X} in X being homotopic to π , and the fibre map $f: X \to K(G, 1)$ being multiplicative. The group G acts trivially on $H^*(\overline{X}; Z_p)$, so we have simple coefficients in E_2 (with coefficients in Z_p).

THEOREM. Let p be an odd prime. Then $H^*(\overline{X}; Z_p) = A \otimes E$ as rings, where $A = \pi^*(H^*(X; Z_p) = H^*(X; Z_p)/I$, I is the ideal generated by $f^*(H^*(K(G, 1); Z_p))$, E is the exterior algebra on n generators x_1, \dots, x_n , where the dimension of $x_i = 2p^{r_i} - 1$ and $2p^{r_i}$ are the dimensions of a system of generators of the kernel of f^* . If p = 2, then the same result holds, but only as modules.

The proof rests on the multiplicative nature of the fibre map f. This enables us to introduce a diagonal map into the spectral sequence and obtain a spectral sequence of commutative Hopf algebras [1]. Using the fact that $E_2 = H^*(\overline{X}; Z_p) \otimes H^*(K(G, 1); Z_p)$ as Hopf algebras, one can show that if $G = Z_{p^n}$, thenst the kernel of f^* is a polynomial ring with one generator y in dimension $2p^r$, and d^{2p^r} is the only nontrivial differential in the spectral sequence. There is an indecomposable element $x \in H^*(\overline{X}; Z_p)$ such that $d^{2p^r}(x) = y$, and thus x is not in the image of π^* . If G = Z, then all d^m 's are trivial and $E_2 = E_{\infty}$, (a result due to Serre [2]), while if $G = Z_q$, q prime to p, then $H^*(K(G, 1); Z_p) = 0$ and $H^*(\overline{X}; Z_p)$ is isomorphic to $H^*(X; Z_p)$. The