A NEW METHOD IN FIXED POINT THEORY

BY RICHARD G. SWAN¹

Communicated by S. Eilenberg, February 10, 1959

By modifying the construction of the Cartan-Leray spectral sequence of a covering $[1, Chapter 16, \S8]$, it is possible to prove the following result.

THEOREM 1. Let π be a finite group acting on a space X. Let A be a closed π -stable subspace of X. Then there is a convergent spectral sequence with

$$E_2^{i,j}(X, A) = \hat{H}^i(\pi, H^j(X, A))$$

where \hat{H}^i denotes the Tate cohomology of π [1, Chapter 12] and $H^i(X, A)$ is the jth Čech cohomology group of (X, A) with arbitrary coefficients and with π action induced by that on X. The term E_{∞} is the graded module associated with a certain filtered module $J^*(X, A)$. This sequence is natural with respect to π -equivariant maps of (X, A). If π acts trivially on X, the sequence is trivial i.e. $E_2 = E_{\infty}$.

In order to compute $J^*(X, A)$, we must impose rather drastic conditions.

THEOREM 2. Let X be a paracompact Hausdorff space with the property that any (open) covering of X has a finite dimensional refinement. Assume that any point of X is either left fixed by all elements of π or else is such that all its images under elements of π are distinct.

Let X^{π} , A^{π} be the sets of fixed points in X and A respectively. Then the inclusion $i: (X^{\pi}, A^{\pi}) \rightarrow (X, A)$ induces an isomorphism

$$i^*: J^*(X, A) \to J^*(X^{\pi}, A^{\pi}).$$

REMARK. i^* need not be an isomorphism of filtered modules i.e. $F^k J^*(X, A) \rightarrow F^k J^*(X^{\pi}, A^{\pi})$ need not be onto for all k.

Now, assume that π is cyclic of prime order p. The condition of Theorem 2 about the action of π is then trivially satisfied. The spectral sequence is annihilated by multiplication by p, the order of π . Consequently, all terms are Z_p -modules.

THEOREM 3. Let (X, A) and π satisfy the conditions of Theorem 2 with π cyclic of prime order p. Then for all integers k and n, and any coefficient group,

¹ This work was done while the author was a National Science Foundation fellow.