HOMOMORPHISMS AND IDEMPOTENTS OF GROUP ALGEBRAS

BY PAUL J. COHEN

Communicated by Walter Rudin, January 14, 1959

Let G be a locally compact abelian group. We denote by M(G) the algebra of all finite complex-valued Borel measures on G. The algebra is normed by assigning to each measure its total variation, and the product or convolution of the measures μ and ν is defined by

$$(\mu * \nu)(E) = \int \int_{x+y \in E} d\mu(x) d\nu(y).$$

If a particular Haar measure is chosen on G, the subalgebra of absolutely continuous measures may be identified with L(G), the algebra of absolutely integrable functions. The Fourier transform of a measure μ is a function $\hat{\mu}$ defined on \hat{G} , the dual group of G, by the formula

$$\hat{\mu}(\chi) = \int_{G} (\chi, g) d\mu(g),$$

where (χ, g) denotes χ evaluated at g. Each χ thus yields a homomorphism of M(G) onto the complex numbers. Every such homomorphism of L(G) is obtained in this way.

Let ϕ be a homomorphism of L(G) into M(H). After composing with ϕ , every homomorphism of M(H) onto the complex numbers either is identically zero, or can be identified with a member of \hat{G} . We thus have a map ϕ_* from \hat{H} into $\{\hat{G}, 0\}$, the union of \hat{G} and the symbol 0, the latter to be considered as the point at infinity. Our main result is:

THEOREM 1. For every homomorphism ϕ of L(G) into M(H), there exist a finite number of cosets of open subgroups of \hat{H} , which we denote by K_i , and continuous maps $\psi_i: K_i \rightarrow \hat{G}$, such that

$$\psi_i(x+y-z) = \psi_i(x) + \psi_i(y) - \psi_i(z),$$

with the following property: there is a decomposition of \hat{H} into the disjoint union of sets S_j , each lying in the Boolean ring generated by the sets K_i , such that on each S_j , ϕ_* is either identically zero or agrees with some ψ_i , where $S_j \subset K_i$.

Conversely, for any such map of \hat{H} into $\{\hat{G}, 0\}$, there is a homo-