RESEARCH ANNOUNCEMENTS

Abstract

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

AN n-DIMENSIONAL ANALOGUE OF THE CREMONA-CLEBSCH THEOREM

BY H. GUGGENHEIMER
Communicated by S. Bochner, December 26, 1958

1. Given a Cremona transformation T between two complex projective planes P and P^{\prime}, the exceptional elements in both planes form closed subsets $M \subset P, M^{\prime} \subset P^{\prime}$ such that T induces an analytical homeomorphism of the open sets $P-M$ and $P^{\prime}-M^{\prime}$. The analytical sets M and M^{\prime} may be given a simplicial structure (they are sums of oriented two-dimensional pseudo-manifolds having a finite number of isolated points in common). The famous Cremona-Clebsch theorem on the equality of the number of base points and fundamental curves in each of the planes P, P^{\prime} implies the fact that the zero and twodimensional Betti-groups of M and M^{\prime} are isomorphic. Since neither M nor M^{\prime} can have any torsion, the isomorphism of the one-dimensional Betti-groups of M and M^{\prime} follows from the rationality of the curves of the homaloidal net and Cremona's reciprocity theorem on the multiplicities of a fundamental curve in a base point (cf. [1, no. 50]).

In this note, we propose to treat the case of a Cremona transformation between two complex projective spaces P and P^{\prime} of complex dimension n, and to determine the relations between the additive homology invariants (Betti numbers and torsion coefficients) of the exceptional varieties $M \subset P, M^{\prime} \subset P^{\prime}$. In order to state our result, we introduce a new numerical character:

Let M be a (reducible) algebraic variety of dimension $n-1$ in n-dimensional complex projective space $P_{(n)}$. The greatest common divisor of the orders of the k-dimensional components of a generic intersection of M with a ($k+1$)-dimensional plane will be denoted by $\tau_{(k)}(M)$.

In our case, both M and M^{\prime} are of complex dimension $n-1$, since they contain the Jacobian of the respective homaloidal webs. Our result will be the following:

