SOLUTION OF THE EQUATION $z e^{z}=a$

BY E. M. WRIGHT

Communicated by Richard Bellman, December 15, 1958
The roots of the equation $z e^{z}=a(a \neq 0)$ play a role in the iteration of the exponential function $[2 ; 3 ; 11]$ and in the solution and application of certain difference-differential equations $[1 ; 9 ; 10 ; 12]$. For this reason, several authors $[4 ; 5 ; 7 ; 8 ; 9 ; 12]$ have found various properties of some or all of the roots. Here we "solve" the equation in the following sense. We list the roots Z_{n}, where n takes all integral values, and define Z_{n} precisely for each n. We give a rapidly convergent series for Z_{n} for all n such that $|n|>n_{0}(a)$; the first few terms provide a very good approximation to Z_{n}. In general, n_{0} is fairly small. Finally we show how to calculate each of the remaining $Z_{n}\left(-n_{0} \leqq n \leqq n_{0}\right)$ numerically by giving a variety of methods to find a first approximation to Z_{n} and showing how to improve this to any required degree of accuracy.

We cut the complex z-plane along the negative half of the real axis and take $|\arg z| \leqq \pi$ in the cut-plane. If we put $w=z+\log z$, we have $d w / d z=(z+1) / z$ and there is a branch-point at $z=-1$. The cuts in the z-plane are the two semi-infinite lines on which $w=u \pm \pi i, u \leqq-1$. It can be proved that there is a one-to-one correspondence between the points of the z-plane and those of the w-plane, excluding the cuts in each case, so that the function $z(w)$ is uniquely defined in the cut w-plane.

We write $A=|a|$, take $\log A$ real and $\log a=\log A+i \alpha$, where $-\pi<\alpha \leqq i \pi$. All the roots of our equation are given by Z_{n} $=z(\log a+2 n \pi i)$, where n takes all integral values. Z_{n} is thus precisely defined except when $\alpha=\pi$ and $\log A \leqq-1$, (i.e. when a is real and $-e^{-1} \leqq a<0$). In this one case, $\log a$ and $\log a-2 \pi i$ lie one on each of the two cuts in the w-plane; $z(\log a)$ has two real values, one less than -1 and one between -1 and 0 , while $z(\log a-2 \pi i)$ has the same two values. If $-e^{-1}<a<0$, we define Z_{-1} and Z_{0} to be these two real values, distinguishing them arbitrarily by $Z_{-1}<-1<Z_{0}<0$. If $a=-e^{-1}$, the equation (1) has a double root at $z=-1$ and we put $Z_{-1}=Z_{0}=-1$. In addition, when a is real and positive, Z_{0} is real. There are no other real roots for any a.

For every nonreal root Z_{n}, we write $Z_{n}=X_{n}+i Y_{n}$. It is easily proved that Y_{0} lies between 0 and α, that

$$
(2 n-1) \pi+\alpha<Y_{n}<2 n \pi+\alpha \quad(n \geqq 1)
$$

and that

