AN ACTION OF A FINITE GROUP ON AN *n*-CELL WITHOUT STATIONARY POINTS

BY E. E. FLOYD AND R. W. RICHARDSON¹ Communicated by Deane Montgomery, November 19, 1958

If G is a transformation group on a space X, then $x \in X$ is a stationary point if gx = x for every $g \in G$. It has been an open problem, proposed by Smith [5] and by Montgomery [1, Problem 39], to determine whether every compact Lie group acting on a cell or on Euclidean space has a stationary point. Smith [4; 5] has shown the answer to be in the affirmative in case G is a toral group or a finite group of prime power order. In this note we give a simplicial action of A_5 , the group of even permutations on five letters, on an *n*-cell without stationary points. Greever [3] has recently shown that the only finite groups of order less than 60 which could possibly act simplicially on a cell without stationary points are a certain class of groups of order 36.

We wish to thank P. E. Conner for his help and encouragement.

1. The coset space SO(3)/I. Let SO(3) denote the group of all proper rotations of Euclidean 3-space E^3 and let $I \subset SO(3)$ be the group of rotational symmetries of the icosahedron. As a group, I is isomorphic to A_5 (see [9, pp. 16–18]) and hence is simple.

LEMMA 1. The coset space SO(3)/I has the integral homology groups of the 3-sphere S^3 .

PROOF. Let Q denote the algebra of quaternions and $Q_1 \subset Q$ the group of quaternions of norm one. Identify Q with E^4 and Q_1 with S^3 . Let $\tau: Q_1 \rightarrow SO(3)$ be the standard homomorphism, which is a two-to-one covering map. Set $I' = \tau^{-1}(I)$. Then τ induces a homeomorphism $Q_1/I' \approx SO(3)/I$.

The natural map $\pi: Q_1 \rightarrow Q_1/I'$ is a covering map and the group of covering translations is given by the action of I' on Q, by right multiplication. Since every covering translation preserves orientation it follows that Q_1/I' is an orientable 3-manifold and hence $H_3(Q_1/I') \approx H_3(SO(3)/I) \approx Z$ (here Z denotes the integers).

From covering space theory the fundamental group $\pi_1(Q_1/I')$ is isomorphic to I'. Thus $H_1(Q_1/I')$ is isomorphic to I'/[I', I'] where [I', I'] denotes the commutator subgroup of I'. Since I is simple,

¹ The first named author is the holder of a NSF Senior Postdoctoral Fellowship; the work of the second has been supported in part by contract A.F. 49(638)-104.