GENERAL BOUNDARY VALUE PROBLEMS FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

BY MARTIN SCHECHTER

Communicated by Lipman Bers, November 19, 1958

In this paper we combine the methods of Aronszajn and Milgram [3] with those previously employed by the author [9] and solve very general boundary value problems for elliptic equations. For convenience we consider equations, but much of what we say can be carried over to systems without difficulty.

Let $\mu = (\mu_1, \mu_2, \dots, \mu_n)$ be a sequence of indices, each ≥ 0 , and set

$$|\mu| = \sum_{\mu_k, \quad \xi^{\mu} = \xi_1^{\mu_1} \xi_2^{\mu_2} \cdot \cdot \cdot \xi_n^{\mu_n},$$

$$D^{\mu} = \partial^{|\mu|} / (i\partial x_1)^{\mu_1} (i\partial x_2)^{\mu_2} \cdot \cdot \cdot (i\partial \chi_n)^{\mu_n}$$

where $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ is any *n*-dimensional vector. The linear partial differential operator of order 2r

$$A = \sum_{|\mu| \leq 2r} a_{\mu}(x) D^{\mu}$$

with complex coefficients $a_{\mu}(x)$ is elliptic in a region $R \subseteq E^n$ if its characteristic polynomial

$$P(x, \xi) = \sum_{|\mu|=2r} a_{\mu}(x) \xi^{\mu}$$

does not vanish in R for real $\xi \neq 0$. If R is the closure \overline{G} of a bounded domain G, we shall say that A is properly elliptic in \overline{G} if in addition it satisfies at every point x on the boundary \dot{G} of G (cf. [2; 5; 8]).

CONDITION 1. For every real vector $\tau \neq 0$ parallel to \dot{G} at x and every real $\nu \neq 0$ normal to \dot{G} at x, the polynomial $P(z) = P(x, \tau + z\nu)$ has exactly r roots $\lambda_k(\tau, \nu)$, $k = 1, 2, \cdots, r$, with positive imaginary parts.

If n > 2, all elliptic operators are properly elliptic.

By a boundary operator we shall mean a linear partial differential operator whose coefficients need merely be defined on \dot{G} . If

$$B_j = \sum_{|\mu| \leq m_j} b_{j\mu}(x) D^{\mu}, \qquad j = 1, 2, \cdots, r,$$

is a set of such operators, we set

$$Q_j(x, \xi) = \sum_{|\mu|=m_j} b_{j\mu}(x)\xi^{\mu}, \qquad j = 1, 2, \cdots, r.$$

We shall say that the set $\{B_j\}_{j=1}^r$ "covers" a properly elliptic operator A if each $m_j < 2r$ and the B_j satisfy at each point $x \in \dot{G}$.