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Imbed a n w - 1 sphere in an n sphere, and the complement is di
vided into two components. I t seems that the closure of each of the 
resulting components should be a topological w-cell. This statement 
isn't true. The classical counterexample (in dimension 3) is the Alex
ander Horned Sphere.1 I t was conjectured, however, that if one re
stricts one's attention to some class of well-behaved imbeddings, then 
the statement is true. For instance, in the differentiable case, the 
Schoenflies Problem asks an even stronger question: Given <j>: Sn~l 

—>En, a differentiable imbedding of the (ra —1) -sphere in Euclidean 
space, can one extend <j> to a differentiable imbedding of the unit ball 
(of which Sn~x is the boundary) into Euclidean space?2 

And, in fact, proofs exist for the usual categories of nice imbed
dings: differentiable and polyhedral, in dimensions 1, 2, and 3.3 The 
problem, then, is to prove this statement for arbitrary dimension N. 
Such a proof follows under a niceness condition which includes the 
condition of differentiability.4 

Outline of proof. Let x be the set of manifolds bounded by the 
n — 1 sphere obtainable as the closure of a complement of a nice 
imbedding of Sn~x in 5 n . Define a commutative semi-group structure 
in x- (Really, it cannot be done, but just enough of a multiplication 

1 The classical such reference is Alexander's paper in the 1924 PNAS. For other 
amazing examples of bad imbeddings of 2-spheres in 3-space, there is an article by 
Artin and Fox in Volume 49 of the Annals of Mathematics. 

2 Results of Milnor (in the 1957 Annals) show that this is impossible as stated. 
That is, he obtains a diffeomorphism <f> of S6 onto itself that cannot be extended to a 
diffeomorphism of the unit ball in E7 onto itself. Actually, it can be extended to a 
homeomorphism of the unit ball onto itself that is a diffeomorphism except at one 
point. 

8 There are proofs of this due to Alexander, also in the 1924 PNAS, and more 
recently, Moise, in the 1952 Annals. 

4 The fact that differentiable imbeddings are 'nice' in my sense is well-known, and 
fairly obvious. Whether or not my conditions of niceness subsume polyhedral im» 
beddings is an open question. 
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