RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

ON EMBEDDINGS OF SPHERES

BY BARRY MAZUR

Communicated by R. H. Bing, August 18, 1958

Imbed an n-1 sphere in an n sphere, and the complement is divided into two components. It seems that the closure of each of the resulting components should be a topological n-cell. This statement isn't true. The classical counterexample (in dimension 3) is the Alexander Horned Sphere.¹ It was conjectured, however, that if one restricts one's attention to some class of well-behaved imbeddings, then the statement is true. For instance, in the differentiable case, the Schoenflies Problem asks an even stronger question: Given $\phi: S^{n-1}$ $\rightarrow E^n$, a differentiable imbedding of the (n-1)-sphere in Euclidean space, can one extend ϕ to a differentiable imbedding of the unit ball (of which S^{n-1} is the boundary) into Euclidean space?²

And, in fact, proofs exist for the usual categories of nice imbeddings: differentiable and polyhedral, in dimensions 1, 2, and 3.³ The problem, then, is to prove this statement for arbitrary dimension N. Such a proof follows under a niceness condition which includes the condition of differentiability.⁴

Outline of proof. Let χ be the set of manifolds bounded by the n-1 sphere obtainable as the closure of a complement of a nice imbedding of S^{n-1} in S^n . Define a commutative semi-group structure in χ . (Really, it cannot be done, but just enough of a multiplication

¹ The classical such reference is Alexander's paper in the 1924 PNAS. For other amazing examples of bad imbeddings of 2-spheres in 3-space, there is an article by Artin and Fox in Volume 49 of the Annals of Mathematics.

² Results of Milnor (in the 1957 Annals) show that this is impossible as stated. That is, he obtains a diffeomorphism ϕ of S^6 onto itself that cannot be extended to a diffeomorphism of the unit ball in E^7 onto itself. Actually, it can be extended to a homeomorphism of the unit ball onto itself that is a diffeomorphism except at one point.

⁸ There are proofs of this due to Alexander, also in the 1924 PNAS, and more recently, Moise, in the 1952 Annals.

⁴ The fact that differentiable imbeddings are 'nice' in my sense is well-known, and fairly obvious. Whether or not my conditions of niceness subsume polyhedral imbeddings is an open question.