2. V. S. Rogozin, Two sufficient conditions for the univalence of a mapping, Rostov Gos. Univ. Uč. Zap. Fiz.-Mat. Fak. vol. 32 (1955) pp. 135-137.

3. M. O. Reade, A radius of univalence for $\int_0^s e^{-t^2} d\zeta$, Preliminary report, Bull. Amer. Math. Soc. Abstract 63-3-372.

The Ohio State University and California Institute of Technology

FUNCTIONS WHOSE PARTIAL DERIVATIVES ARE MEASURES

BY WENDELL H. FLEMING

Communicated by W. S. Massey, July 16, 1958

Let x denote a generic point of euclidean N-space $\mathbb{R}^{N}(N \ge 2)$. We consider the space \mathfrak{F} of all summable functions f(x) such that the gradient grad f (in the distribution theory sense) is a totally finite measure. I(f) denotes the total variation of the vector measure grad f. In case grad f is a function F we have

$$I(f) = \int_{\mathbb{R}^N} \left| F(x) \right| \, dx.$$

We write H_k for Hausdorff k-measure; and fr E for the frontier of a set E. Fr E is *rectifiable* if it is the Lipschitzian image of a compact subset of \mathbb{R}^{N-1} .

One ought to be able to determine the primitive f with greater precision than grad f, at least in certain cases. Our main result is that indeed f can be determined up to H_{N-1} -measure 0 in two (quite opposed) cases: (1) grad f is a function; (2) the range of f is a discrete set, which we may take to be the integers. More precisely, let $\mathfrak{F}_1, \mathfrak{F}_2$ be the sets of those $f \in \mathfrak{F}$ satisfying (1) and (2) respectively. Let \mathfrak{F}_{01} be the set of all Lipschitzian functions f with compact support. Let \mathfrak{F}_{02} be the set of all functions f with the following property: there exist a closed oriented (N-1)-polyhedron A and a Lipschitzian mapping g(w) from A into \mathbb{R}^N such that, for every $x \in g(A)$, f(x) is the degree of the mapping g at x, and f(x) = 0 for $x \in g(A)$. Write J(w) for the Jacobian vector of g(w), wherever it exists. Let Q denote the set of points $x \in g(A)$ at which there is a nonunique tangent; more precisely, we say that $x \in Q$ if there exist $w, w' \in A$ such that: (1) g is