RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

SPLINE FUNCTIONS, CONVEX CURVES AND MECHANICAL QUADRATURE ${ }^{1}$

BY I. J. SCHOENBERG

Communicated July 10, 1958
The following lines describe some closely related results concerning the three subjects of the title. Detailed proofs will be given elsewhere.

1. Spline functions. Let x_{+}^{n-1} denote the truncated power function defined as x^{n-1} if $x \geqq 0$ and $=0$ if $x<0(n=1,2, \cdots)$. Let $\xi_{\nu}(\nu=1, \cdots, k)$ be a given finite sequence of increasing abscissae. By a spline function of degree $n-1$ we mean a function of the form

$$
\begin{equation*}
S_{n-1, k}(x)=P_{n-1}(x)+\sum_{\nu=1}^{k} C_{\nu}\left(x-\xi_{\nu}\right)_{+}^{n-1} \tag{1}
\end{equation*}
$$

where $P_{n-1}(x)$ is a polynomial of degree $\leqq n-1$. Equivalently, this function may be defined by separate polynomials of degree $\leqq n-1$ in each of the $k+1$ intervals $\left(-\infty, \xi_{1}\right),\left(\xi_{1}, \xi_{2}\right), \cdots,\left(\xi_{k}, \infty\right)$, such that the composite function has $n-2$ continuous derivatives for all real x. For $n=1$ we obtain a step-function, for $n=2$ a continuous broken-line graph and so on. The ξ_{ν} are called the knots of the spline function. The reasons for the name "spline function" are explained in [5, p. 67].

By adding to the spline (1) the monomial x^{n} we obtain a function

$$
\begin{equation*}
F(x)=x^{n}+S_{n-1, k}(x) \tag{2}
\end{equation*}
$$

which we call a monospline of degree n and knots ξ_{r}. Both splines and monosplines become polynomials if $k=0$. Much of the familiar Algebra of polynomials disappears if $k>0$, as these systems are not closed with respect to multiplication. Fortunately much of the Calculus of polynomials survives such as the relations

[^0]
[^0]: ${ }^{1}$ This paper was prepared partly under the sponsorship of the United States Air Force, Office of Scientific Research, ARDC, under a contract with the University of Pennsylvania.

