ON THE NONEXISTENCE OF ELEMENTS OF HOPF INVARIANT ONE

BY J. F. ADAMS
Communicated by S. Eilenberg, April 29, 1958

With the usual definitions of homotopy-theory, we have the following theorem.

Theorem 1. (a) S^{n-1} is not an H-space unless $n=2,4$, or 8 .
(b) There is no element of Hopf invariant one in $\pi_{2 n-1}\left(S^{n}\right)$ unless $n=2,4$, or 8 .

For the context of this question, see [5] (especially pp. 436-438), [4, Chapter VI] and [6, §§20, 21].

This theorem results from reasonings with secondary cohomology operations. It is generally understood that a secondary operation corresponds to a relation between primary operations. One may formalize the notion of a "relation" by introducing pairs (d, z), algebraic in nature, as follows.

Let p be a prime; let A be the Steenrod algebra [2, p. 43] over Z_{p}. One defines the notion of a graded left module M over the graded algebra A so that $M=\sum_{q} M_{q}$ and $A_{q} M_{r} \subset M_{q+r}$. For example, let us write $H^{q}(X)$ for $H^{q}\left(X ; Z_{p}\right), H^{*}(X)$ for $\sum_{q} H^{q}\left(X ; Z_{p}\right)$ and $H^{+}(X)$ for $\sum_{q>0} H^{q}\left(X ; Z_{p}\right)$; then $H^{*}(X)$ and $H^{+}(X)$ are graded left modules over A. Let M, N be such modules; one defines the notion of an A-map $f: M \rightarrow N$ of degree r so that $f\left(M_{q}\right) \subset N_{q+r}$.

A pair (d, z), then, is to have the following nature. The first entry d is to be an A-map $d: C_{1} \rightarrow C_{0}$ of degree zero. Here C_{0}, C_{1} are to be modules in the above sense; we require, moreover, that they are locally finitely-generated and free, and that $\left(C_{i}\right)_{q}=0$ if $q<i(i=0,1)$. The second entry z is to be a homogeneous element of Ker d.

Let (d, z), then, be a pair of this sort. We call Φ a stable secondary cohomology operation associated with (d, z), if it satisfies the following axioms.

Axiom (1). $\Phi(\epsilon)$ is defined for each A-map $\epsilon: C_{0} \rightarrow H^{+}(X)$ of degree $m \geqq 1$ and such that $\epsilon d=0$.

Such a map ϵ is determined by its values on the elements of an A-base of C_{0}. It therefore corresponds to a set of elements of $H^{+}(X)$. In particular, if C_{0} is free on one given generator c, we write $u=\epsilon c$; we may thus consider Φ as a function of one variable u, where u runs over a subset of $H^{+}(X)$. In this case we write $\Phi(u)$ for $\Phi(\epsilon)$.

For the next axiom, set $\operatorname{deg}(z)=n+1$, let $f: C_{1} \rightarrow H^{+}(X)$ run over

