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The proofs of (4.2) and then of (1.1) are essentially the same as 
those of (3.2) and Dehn's lemma. The details are left to the reader. 
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RESEARCH PROBLEMS 

12. Richard Bellman: Ordinary differential equations. 

It is known that if 
a. A is a stability matrix, i.e., all characteristic roots have negative real parts, 
b- ||«(*)||/JM|-»0 as IHI-0, (||*|| = E.-W), 

then all solutions of dx/dt—Ax-\-g(x) approach zero as t—»<*>, provided that ||#(0)|| 
is sufficiently small (Poincaré-Lyapunov theorem). 

If x(0) —a\c, where c is a characteristic vector of A and a\ is a scalar, what is the 
precise bound for \a\\ in terms of A and g(x)? (Received January 7, 1958.) 

13. Richard Bellman: Partial differential equations. 

It is known that if \g(u)\ / |u \ —»0 as u—>0, then the solution of ut = uxx+g(u), 
u(0, t) —u(l, t) =0, />0, approaches zero as t—» oo, provided that Maxo^a^i | u(x, 0)| 
is sufficiently small. 

a. If u{x, 0) —c\ what is the precise bound for \c-\ in terms of g(u)7 
b. If u(x, 0) =ci sin kirx, what is the precise bound for |ci| in terms of g(u)7 

14. Richard Bellman: Functional equations. 

Let fn(u) be an analytic function of the function u(x) and its first n derivatives 
u'{x), • • • , u{n){x), for u 7e 0, satisfying the functional equation 

fn(uv) =fn(u) + ƒ » ( » ) . 

It is well-known that/o(«)—ci log u, and under much lighter conditions, and it is 
easy to show that fi(u) —C\ log u+ctu'/u. 

What is the analytic form of fn for general w? (Received January 9, 1958.) 

15. Richard Bellman: Functional equations and differential equa
tions. 

Consider the nth order linear differential equation 

dnu dn~xu 


