A CLASS OF LATTICE ORDERED ALGEBRAS¹

BY CASPER GOFFMAN

Communicated by Garrett Birkhoff, April 1, 1958

- 1. Our purpose is to characterize those lattice ordered algebras which may be represented as algebras of Carathéodory functions. This work is, accordingly, a sequel to [1] where the same problem was considered for lattice ordered groups. The rings considered here are more restrictive than those of Birkhoff and Pierce in [2], where an "F-ring" is shown to be isomorphic to a subring of the direct union of totally ordered rings (but the multiplication in [2] is not necessarily that which may be expected for functions; indeed, all products may be zero. In our case, the axioms compel the algebra multiplication to conform to that of the Carathéodory functions). Brainerd [3] has considered a class of algebras which have function space representations, but his emphasis is different from ours.
- 2. In this section, we define a Carathéodory algebra. Let B be a relatively complemented distributive lattice. Let E be the set of forms $f = a_1 \alpha_1 + \cdots + a_n \alpha_n$, where $\alpha_i \in B$, a_i real, $i = 1, \cdots, n$. With $f \ge 0$ if $a_i \ge 0$ for all i, and addition and multiplication defined by $f + g = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_i + b_j)(\alpha_i \cap \beta_j) + \sum_{i=1}^{n} a_i(\alpha_i - \bigcup_{j=1}^{m} \beta_j) + \sum_{j=1}^{m} b_j(\beta_j - \bigcup_{i=1}^{n} \alpha_i)$ and $fg = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j(\alpha_i \cap \beta_j)$ where $f = \sum_{i=1}^{n} a_i \alpha_i$ and $g = \sum_{j=1}^{m} b_j \beta_j$, E is a lattice ordered algebra, which we call the algebra of elementary Carathéodory functions. Let \overline{E} be the conditional completion of E. \overline{E} is the set of bounded Carathéodory functions. In order to define the general Carathéodory function, we need the notion of carrier. In a lattice ordered group, for every $x \ge 0$, $y \ge 0$, we say $x \sim y$ if $x \cap z = 0$ when and only when $y \cap z = 0$. The equivalence classes obtained in this way are called carriers (filets by [Iaffard [4]) and form a relatively complemented distributive lattice. The equivalence class to which x belongs is called the carrier of x. In \overline{E} , consider pairwise disjoint sequences $\{f_n\}$ whose carriers have an upper bound, and consider the formal sums $\sum f_n$. With order, addition, and multiplication defined appropriately, these formal sums constitute a lattice ordered algebra—the Carathéodory algebra C generated by B. (For details on related matters see [5; 6] and [1].)
- 3. Let R be an archimedean lattice ordered algebra. Then R is a lattice with positive cone P such that $x, y \in P$, $a \ge 0$ real, implies

 $^{^{\}rm 1}\,{\rm Supported}$ by National Science Foundation grant no. NSF G-2267 on ordered systems.