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1. Our purpose is to characterize those lattice ordered algebras 
which may be represented as algebras of Carathéodory functions. 
This work is, accordingly, a sequel to [l] where the same problem 
was considered for lattice ordered groups. The rings considered here 
are more restrictive than those of Birkhoff and Pierce in [2], where 
an "Turing" is shown to be isomorphic to a subring of the direct union 
of totally ordered rings (but the multiplication in [2] is not neces­
sarily that which may be expected for functions; indeed, all products 
may be zero. In our case, the axioms compel the algebra multiplica­
tion to conform to that of the Carathéodory functions). Brainerd 
[3 ] has considered a class of algebras which have function space repre­
sentations, but his emphasis is different from ours. 

2. In this section, we define a Carathéodory algebra. Let B be a 
relatively complemented distributive lattice. Let E be the set of 
forms ƒ = # i a i + • • • -\-anan, where a^B, a* real, i = l, • • • , n. 
With ƒ ̂ 0 if a ; ^ 0 for all i, and addition and multiplication defined 
by ƒ + g = Z £ I E T - I ( * < + W(«*n]8y) + :D-ia<(«<-UJLift) 
+ Zr-i&iGSy-U?..!*,) and fg = Z t i E f = i ^ ^ ( ^ n f t ) where 

ƒ = 53?-1 a*ai a n d g~ X X I b$j> E is a lattice ordered algebra, which 
we call the algebra of elementary Carathéodory functions. Let E be 
the conditional completion of E. E is the set of bounded Carathéodory 
functions. In order to define the general Carathéodory function, we 
need the notion of carrier. In a lattice ordered group, for every x*z0, 
y^O, we say x^y if xP\3 = 0 when and only when yr\z = 0. The 
equivalence classes obtained in this way are called carriers (filets by 
Jaffard [4]) and form a relatively complemented distributive lattice. 
The equivalence class to which x belongs is called the carrier of x. 
In Ey consider pairwise disjoint sequences {fn} whose carriers have 
an upper bound, and consider the formal sums ]T) ƒ»»• With order, 
addition, and multiplication defined appropriately, these formal sums 
constitute a lattice ordered algebra—the Carathéodory algebra C 
generated by B. (For details on related matters see [5; 6] and [l].) 

3. Let R be an archimedean lattice ordered algebra. Then R is a 
lattice with positive cone P such that x, yÇ.P, a^O real, implies 
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