ON THE CHARACTERS OF A SEMISIMPLE LIE GROUP

HARISH-CHANDRA

Let G be a connected semisimple Lie group and let Z denote its center. If π is a representation [2c] of G on a Hilbert space \mathfrak{S} we consider the space V consisting of all finite linear combinations of elements of the form

$$
\int f(x) \pi(x) \psi d x \quad\left(f \in C_{c}^{\infty}(G), \psi \in \mathfrak{Y}\right)
$$

where $d x$ is the Haar measure of G and $C_{c}^{\infty}(G)$ is the set of all (complexvalued) functions on G which are everywhere indefinitely differentiable and which vanish outside a compact set. V is called the Gårding subspace of \mathfrak{S}. Let R and C be the fields of real and complex numbers respectively and g_{0} the Lie algebra of G. We complexify g_{0} to g and denote by \mathfrak{B} the universal enveloping algebra of $\mathfrak{g}[2 a]$. Then there exists a (uniquely determined) representation π_{V} of \mathfrak{B} on V such that $\pi_{V}(X) \psi=\lim _{t \rightarrow 0}(1 / t)\{\pi(\exp t X) \psi-\psi\} \quad\left(X \in \mathfrak{g}_{0}, \psi \in V, t \in R\right)$. Let \mathcal{B} denote the center of \mathfrak{B}. We say that π is quasi-simple if there exist homomorphisms η and χ of Z and 3 respectively into C such that $\pi(\zeta) \phi=\eta(\zeta) \phi, \pi_{V}(z) \psi=\chi(z) \psi$ for all $\zeta \in Z, z \in \mathfrak{B}, \phi \in \mathfrak{S}$ and $\psi \in V . \eta$ is then called the central character and χ the infinitesimal character of π. An irreducible unitary representation is automatically quasi-simple [5].

Let A be a bounded linear operator on \mathfrak{S}. We say that A is of the trace class or A has a trace if for every complete orthonormal set $\left(\psi_{j}\right)_{j \in J}$ in \mathfrak{S} the series ${ }^{1} \sum_{j \in J}\left(\psi_{j}, A \psi_{j}\right)$ converges absolutely and its sum is independent of the choice of the complete orthonormal set. ${ }^{2}$ We call this sum the trace of A and denote it by $\operatorname{Sp} A$. Now suppose π is quasi-simple and irreducible. Then it can be shown (see [2e]) that for any $f \in C_{c}^{\infty}(G)$ the operator $\int f(x) \pi(x) d x$ is of the trace class. If we denote its trace by $T_{\pi}(f)$ we get a linear function T_{π} on $C_{c}^{\infty}(G)$ which is actually a distribution (see [4; and 2e]). We call this distribution the character of π. Our object is to try to determine T_{π}.

[^0]
[^0]: An address delivered before the New York meeting of the Society on February 25,1955 by invitation of the Committee to Select Hour Speakers for Eastern Sectional Meetings; received by the editors March 28, 1955.
 ${ }^{1}$ As usual (ϕ, ψ) denotes the scalar product of the two elements ϕ and ψ in \mathfrak{y}.
 ${ }^{2}$ Actually it can be shown that this independence of the sum follows automatically from the absolute convergence of the series for every orthonormal base.

