
ON THE CHARACTERS OF A SEMISIMPLE LIE GROUP 

HARISH-CHANDRA 

Let G be a connected semisimple Lie group and let Z denote its 
center. If ir is a representation [2c] of G on a Hubert space § we con
sider the space V consisting of all finite linear combinations of ele
ments of the form 

ff(xMx)Wx (ƒ G CftG), * G ©), 

where dx is the Haar measure of G and C?(G) is the set of all (complex-
valued) functions on G which are everywhere indefinitely differenti
a t e and which vanish outside a compact set. V is called the Gârding 
subspace of § . Let R and C be the fields of real and complex numbers 
respectively and g0 the Lie algebra of G. We complexify g0 to Q and 
denote by $8 the universal enveloping algebra of Q [2a]. Then there 
exists a (uniquely determined) representation TTV of S3 on V such that 
7rF(X)^ = lim^o(lA){7r(exp tX)f-f} (XGöo, ^ G F , tGR). Let S 
denote the center of S3. We say that TT is quasi-simple if there exist 
homomorphisms rj and % of Z and 3 respectively into C such that 
7r(r)0 = î?(r)0, x r ( s ) * = x ( * # for all f £ Z , * G 3 , 4>G£ and ^ £ F . 77 is 
then called the central character and x the infinitesimal character of 
7T. An irreducible unitary representation is automatically quasi-simple 
[5]. 

Let A be a bounded linear operator on § . We say that A is of the 
trace class or A has a trace if for every complete orthonormal set 
(\{/j)j£j in § the series1 ^CiG^ W'i» - ^ i ) converges absolutely and 
its sum is independent of the choice of the complete orthonormal set.2 

We call this sum the trace of A and denote it by Sp A. Now suppose w 
is quasi-simple and irreducible. Then it can be shown (see [2e]) that 
for any /GGC°°(G) the operator ff(x)ir{x)dx is of the trace class. If we 
denote its trace by TT(J) we get a linear function Tr on CC°°(G) which 
is actually a distribution (see [4; and 2e]). We call this distribution 
the character of 7r. Our object is to try to determine TV. 
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1 As usual (</>, \p) denotes the scalar product of the two elements <f> and \p in ^p. 
2 Actually it can be shown that this independence of the sum follows automatically 

from the absolute convergence of the series for every orthonormal base. 
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