ON THE CHARACTERS OF A SEMISIMPLE LIE GROUP

HARISH-CHANDRA

Let G be a connected semisimple Lie group and let Z denote its center. If π is a representation [2c] of G on a Hilbert space \mathfrak{H} we consider the space V consisting of all finite linear combinations of elements of the form

$$\int f(x)\pi(x)\psi dx \qquad (f\in C_c^{\infty}(G),\,\psi\in\mathfrak{H}),$$

where dx is the Haar measure of G and $C_{\epsilon}^{\infty}(G)$ is the set of all (complexvalued) functions on G which are everywhere indefinitely differentiable and which vanish outside a compact set. V is called the Gårding subspace of \mathfrak{F} . Let R and C be the fields of real and complex numbers respectively and \mathfrak{g}_0 the Lie algebra of G. We complexify \mathfrak{g}_0 to \mathfrak{g} and denote by \mathfrak{B} the universal enveloping algebra of \mathfrak{g} [2a]. Then there exists a (uniquely determined) representation π_V of \mathfrak{B} on V such that $\pi_V(X)\psi = \lim_{t\to 0} (1/t) \{\pi(\exp tX)\psi - \psi\}$ ($X \in \mathfrak{g}_0, \psi \in V, t \in \mathbb{R}$). Let \mathfrak{Z} denote the center of \mathfrak{B} . We say that π is quasi-simple if there exist homomorphisms η and χ of Z and \mathfrak{Z} respectively into C such that $\pi(\zeta)\phi = \eta(\zeta)\phi, \pi_V(z)\psi = \chi(z)\psi$ for all $\zeta \in Z, z \in \mathfrak{Z}, \phi \in \mathfrak{H}$ and $\psi \in V. \eta$ is then called the central character and χ the infinitesimal character of π . An irreducible unitary representation is automatically quasi-simple [5].

Let A be a bounded linear operator on \mathfrak{G} . We say that A is of the trace class or A has a trace if for every complete orthonormal set $(\psi_j)_{j \in J}$ in \mathfrak{G} the series $\sum_{j \in J} (\psi_j, A\psi_j)$ converges absolutely and its sum is independent of the choice of the complete orthonormal set.² We call this sum the trace of A and denote it by Sp A. Now suppose π is quasi-simple and irreducible. Then it can be shown (see [2e]) that for any $f \in C_c^{\infty}(G)$ the operator $\int f(x)\pi(x)dx$ is of the trace class. If we denote its trace by $T_{\pi}(f)$ we get a linear function T_{π} on $C_c^{\infty}(G)$ which is actually a distribution (see [4; and 2e]). We call this distribution the character of π . Our object is to try to determine T_{π} .

An address delivered before the New York meeting of the Society on February 25, 1955 by invitation of the Committee to Select Hour Speakers for Eastern Sectional Meetings; received by the editors March 28, 1955.

¹ As usual (ϕ, ψ) denotes the scalar product of the two elements ϕ and ψ in \mathfrak{H} .

² Actually it can be shown that this independence of the sum follows automatically from the absolute convergence of the series for every orthonormal base.