
EQUIVALENCE RELATIONS IN ALGEBRAIC GEOMETRY 

ERNST SNAPPER 

1. The cycle groups C8. An algebraic variety F i n w-dimensional 
complex projective space P ( n ) is obtained by equating to zero a 
finite number of forms Fi(x0, • • • , xn)f • • • , Fm(xo, • • • , xn) with 
complex coefficients ; F is assumed to be nonempty. If F i s irreducible, 
that is, if V is not the union of a finite number of proper subvarieties, 
it is possible to associate with V in several ways a complex dimension 
d. For example, just as P ( 1 ) is topologically equivalent to a real 2-
dimensional sphere, so can every P ( n ) be represented topologically 
by a 2w-dimensional real complex in the sense of combinatorial 
topology. (See [ l ] ; numbers in brackets refer to the references.) In 
this representation, F goes over into an even-dimensional, connected, 
orientable, closed complex whose dimension is defined as 2d, This 
complex is denoted by K^2d) and F itself by F (d ) . 

Consider the set T8 of irreducible, s-dimensional subvarieties of 
F (d ) for some fixed s, where OSs^d. A function on T8 is called 
integral if its value for every element of T8 is a rational integer, and 
if the function is zero except for a t most a finite number of elements 
of T8; these functions constitute of course an additive group, denoted 
by C8. We identify the integral function which at the elements 
Wi*\ - • • , W$ of T8 assumes the values wi, • • • , tin and which is 
zero everywhere else on T8 with the linear combination niWi^-jr • • ' 
+nhWJf\ Since every W® gives rise to a 2s-dimensional, connected, 
closed, orientable subcomplex of Ki2d\ the above linear combination 
can be interpreted as a 2s-dimensional cycle of K{U) in the sense of 
topology. This fact is the reason why we call the elements of C8 the 
s-dimensional cycles of F (d ) and often consider C8 as a subgroup of the 
2s-dimensional cycle group of Ki2d). A cycle is called effective if, 
considered as a function, it never assumes a negative value; otherwise 
the cycle is called virtual. The effective cycles are clearly closed 
under addition but not under subtraction, and every cycle is the dif­
ference of two effective cycles. 

The group C8 is completely determined by the cardinal number of 
r „ and hence its structure is of no interest. The importance of C8 

lies in the fact that the different aspects of the geometry of F (d) are 
most conveniently studied by means of the equivalence relations which 
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