ON THE EQUICONVERGENCE OF FOURIER SERIES AND FOURIER INTEGRALS

FÉLIX EDUARDO HERRERA

Given any function f(x) defined for $-\infty < x < \infty$, let

(1)
$$\int_0^\infty \{a(u) \cos ux + b(u) \sin ux\} du$$

be the Fourier integral (F.i.) of f(x). Here

(2)
$$a(u) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos ut dt; \qquad b(u) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \sin ut dt$$

are the cosine and sine transforms of f(x). They exist as absolutely convergent integrals if $f \in L(-\infty, \infty)$, or in a certain generalized sense, if $f \in L^p(-\infty, \infty)$ with 1 .

In all these cases, the partial integrals of (1) are given by the formula

$$S_{\omega}(x, f) = \int_{0}^{\infty} \{a(u) \cos ux + b(u) \sin ux\} du$$
$$= \frac{1}{\pi} \int_{-\infty}^{\infty} f(x+t) \frac{\sin \omega t}{t} dt,$$

but the last integral has meaning if

(3)
$$\int_{-\infty}^{\infty} \frac{|f(t)|}{1+|t|} dt < \infty$$

even if the transforms (2) do not exist.

Now, it is well known that the problem of the representation of f(x) as the limit of

(3a)
$$S_{\omega}(x, f) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x+t) \frac{\sin \omega t}{t} dt$$

for $\omega \rightarrow \infty$ can be reduced to the representation of f(x) by a Fourier series (F.s.). More precisely, we have the following theorem:

(A) Given any function satisfying (3), and any interval $I_a = (a, a+2\pi)$ of length 2π , let $f_a(x)$ be the function of period 2π and coinciding with f(x) in I_a . Let

Received by the editors September 29, 1948.