M. K. FORT

PROOF. In constructing 1-simplexes ('0''0), \cdots , $('0^{(m)}0)$ (not belonging to \mathfrak{M}^2), we get \mathfrak{M}^{*2} , \mathfrak{M}_1^{*2} , \cdots as in the lemma. By (7) and (8), we have

(10)
$$\dot{\mathfrak{h}}_{i}^{*1} = \mathfrak{h}_{i}^{1} + (p_{i} - 1)\mathfrak{g},$$

where \mathfrak{H}_{i}^{*1} is the homology group of \mathfrak{M}_{i}^{*2} . The newly constructed simplexes form a connected 1-complex whose 1-dimensional homology group contains the identity only. Therefore from a famous theorem (cf. Seifert-Threfall, p. 179), by (5) we get

where \mathfrak{h}^{*1} is the homology group of \mathfrak{M}^{*2} . Therefore (9) is finally established in virtue of (11) and (8)'.

Theorem (3.5) may be extended analogously.

NATIONAL WUHAN UNIVERSITY

A NOTE ON EQUICONTINUITY

M. K. FORT, JR.

During a recent seminar discussion of his paper *Transitivity and* equicontinuity [1],¹ W. H. Gottschalk proposed the following question:

"Is the center of every algebraically transitive group of homeomorphisms on a compact metric space equicontinuous?"

An affirmative answer to the above question is given in this note.

1. Definitions. We let X and Y be compact metric spaces and let d be the metric for Y.

A set F of functions on X into X is algebraically transitive if corresponding to each pair p and q of points in X there exists $f \in F$ such that f(p) = q.

A sequence $[g_n]$ of functions on X into Y converges to a function

¹ Numbers in brackets refer to the bibliography at the end of the paper.

[December

1098

Presented to the Society, November 27, 1948; received by the editors August 10, 1948.