A NONHOMOGENEOUS MINIMAL SET

E. E. FLOYD

1. Introduction. In this note we consider the following question: does there exist a compact minimal set which is of dimension 0 at some of its points and of positive dimension at others? We answer the question in the affirmative by constructing a compact plane set X and a homeomorphism T of X onto X such that X is minimal with respect to T (that is, contains no proper closed subset Y with $T(Y) \subset Y$) and such that X possesses the desired property. As a result, there exist nonhomogeneous minimal sets.

An outline of the procedure is as follows. A compact, totally disconnected subset A of the x-axis in the plane and a homeomorphism f of A onto A are defined so that A is minimal with respect to f. Two real functions b_{0} and b_{1} are then defined on A with $0 \leqq b_{0}(x) \leqq b_{1}(x) \leqq 1$. We then let X be the set of all points $\left(x, t b_{1}(x)+(1-t) b_{0}(x)\right)$ for $x \in A$ and $0 \leqq t \leqq 1$, thus in effect erecting a vertical interval or a point over each $x \in A$. Then T is defined so as to send the point determined by x and t into the point determined by $f(x)$ and t.

2. The example.

Definitions. Let A_{i} denote the set of integers $1, \cdots, 3^{i}$ and let π_{i+1} be the map from A_{i+1} to A_{i} defined by $\pi_{i+1}(p)=p \bmod 3^{i}$ for $p \in A_{i+1}$. Let A designate the limit space of the sequence $\left(A_{i}, \pi_{i+1}\right)$ [1]. ${ }^{1}$ Then A is a compact totally disconnected metric space. Let f_{i} be the map from A_{i} onto A_{i} defined by $f_{i}(p)=(p+1) \bmod 3^{i}$; then $\pi_{i+1} f_{i+1}=f_{i} \pi_{i+1}$. It follows that the map defined by $f(x)=f_{i}\left(\left(x_{i}\right)\right)$ for $x=\left(x_{i}\right) \in A$ is a homeomorphism of A onto A. Moreover A is minimal with respect to f for if $x=\left(x_{i}\right) \in A$ and $y=\left(y_{i}\right) \in A$, then $f^{y_{n}-x_{n}}(x)$ has its first n coordinates equal to those of y.

Let $x=\left(x_{i}\right) \in A$; the points of A_{i+1} mapping onto x_{i} under π_{i+1} are $x_{i}+\alpha \cdot 3^{i}, \alpha=0,1,2$. Define α_{i} by $x_{i+1}=x_{i}+\alpha_{i} \cdot 3^{i}$. We call the subsequence $\beta_{1}, \beta_{2}, \cdots$ of $\alpha_{1}, \alpha_{2}, \cdots$ consisting of all $\alpha_{i} \neq 1$ the associated sequence for x, and define several functions of x :

Let $a(x)$ be the number of elements in the associated sequence for x ($a(x)$ is either a non-negative integer or ∞).

Let $b_{0}(x)=0$ if $a(x)=0, b_{0}(x)=(1 / 2) \sum_{j=1}^{a(x)} \beta_{j} / 2^{j}$ if $a(x)>0$.
Let $b_{1}(x)=b_{0}(x)+\sum_{j>a(x)} 1 / 2^{j}=b_{0}(x)+1 / 2^{a(x)}$ if $a(x)<\infty$, and let
Presented to the Society, September 10, 1948; received by the editors July 20, 1948.
${ }^{1}$ Numbers enclosed in brackets refer to the bibliography at the end of the paper.

