TRANSCENDENCE OF FACTORIAL SERIES WITH PERIODIC COEFFICENTS

VERNE E. DIETRICH AND ARTHUR ROSENTHAL

It is well known that every real number α can be represented by a factorial series

$$
\begin{equation*}
\alpha=\frac{a_{1}}{1!}+\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\cdots+\frac{a_{n}}{n!}+\cdots, \tag{1}
\end{equation*}
$$

where the $a_{n}(n=1,2, \cdots)$ are integers and, moreover, $0 \leqq a_{n}<n$ (for $n=2,3, \cdots$). This representation is unique for the irrational numbers α, while every rational α can be represented either with almost all ${ }^{1} a_{n}=0$ or with almost all $a_{n}=n-1$.

The representation (1) was discussed and the aforesaid properties were proved by M. Stéphanos [1]. ${ }^{2}$ But an even more general type of series had already been studied by G. Cantor [2] (not known to M. Stéphanos). These series have later been called "Cantor series" (cf. [3]).

In this note we consider the case in which the factorial series (1) has periodic coefficients a_{n} and we prove the following theorem:

Theorem 1. Every number α represented by a factorial series (1) with periodic coefficients is transcendental (except for the trivial case where almost all a_{n} are zero).

The above condition $0 \leqq a_{n}<n$ (for $n=2,3, \cdots$) is not used at all in the following proof. Moreover, the coefficients a_{n} need not necessarily be integers; the a_{n} can be any algebraic numbers. Then Theorem 1 and its proof still hold.

We generalize Theorem 1 further:
Theorem 2. If the power series ${ }^{3}$

$$
\begin{equation*}
\phi(z)=\sum_{n=1}^{\infty} \frac{a_{n}}{n!} z^{n} \tag{2}
\end{equation*}
$$

has algebraic coefficients a_{n} (not almost all of them being zero) which form a periodic sequence, then $\phi(z)$ is a transcendental number for every

[^0]
[^0]: Presented to the Society, November 26, 1948; received by the editors August 12, 1948.
 ${ }^{1}$ The expression "almost all" is used in the sense of "all but a finite number."
 ${ }^{2}$ Numbers in brackets refer to the bibliography at the end.
 ${ }^{3}$ Under the conditions of Theorem 2, $\phi(z)$ is an entire function.

