ON THE EUCLIDEAN ALGORITHM IN QUADRATIC NUMBER FIELDS

H. CHATLAND

1. Introduction. Let m be a square-free rational integer. The field $R\left(m^{1 / 2}\right)$ is said to be Euclidean or that the Euclidean algorithm exists in $R\left(m^{1 / 2}\right)$ if for integers $\alpha, \beta \neq 0 \subset R\left(m^{1 / 2}\right)$ there exists an integer $\gamma \subset R\left(m^{1 / 2}\right)$ such that

$$
|N(\alpha-\beta \gamma)|<|N(\beta)|
$$

The problem of determining in what fields $R\left(m^{1 / 2}\right)$ the algorithm exists has been worked out except for m equal to a prime of the form $24 n+1$ and greater than 97 . In this paper it is shown that the Euclidean algorithm does not exist for $m=24 n+1>97$ except possibly for $m=193,241,313,337,457$, and 601 . The problem is not settled in these six cases.
2. Previous results. In order that a field be Euclidean the class number must be 1. However, this condition is not sufficient for, as Dedekind pointed out $[1]^{1}$, the field $R\left(-19^{1 / 2}\right)$ has class number 1 but is not Euclidean. L. E. Dickson [2] showed that for m negative the Euclidean algorithm exists only if $m=-1,-2,-3,-7$, and -11 . For m positive, the algorithm has been shown to exist for the following values of m :

$$
\begin{equation*}
2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73,97 . \tag{1}
\end{equation*}
$$

Except for the last two values in (1) the proofs have been obtained by O. Perron [3], A. Oppenheim [4], R. Remak [5], N. Hofreiter [6], and A. Berg [7]. It was pointed out by I. Schur [4, p. 351] that the algorithm does not exist for $m=47$. A. Oppenheim [4] proved that for $m=23$ and $m=53$ the algorithm does not exist. N. Hofreiter [8] proved non-existence for $m \equiv 14(\bmod 24)$ and [6] for $m=77$ and $m \equiv 21(\bmod 24), m>21$. E. Berg [7] and J. F. Keston [9] proved nonexistence for $m \neq 1(\bmod 4)$ except for the values listed in (1). Also, apart from (1) H. Behrbohm and L. Rédei [10] showed that the algorithm can exist only in the following three cases.

$$
\text { I. } \quad m=p \equiv 13(\bmod 24)
$$

[^0]
[^0]: Presented to the Society, June 19, 1948; received by the editors May 11, 1948, and in revised form, July 23, 1948.
 ${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.

