A THEOREM IN FINITE PROJECTIVE GEOMETRY

CHUNG-TAO YANG

It is known ${ }^{1}$ that if F is a Galois field of order p^{m} and S_{n}^{m} a finite projective n-space over F, then each line of S_{n}^{m} passes through $p^{m}+1$ points and in S_{n}^{m} appear $\left(N_{n, 0}^{m} N_{n, 1}^{m} \cdots N_{n, t}^{m}\right) /\left(N_{t, 0}^{m} N_{t, 1}^{m} \cdots N_{t, t}^{m}\right) t$-spaces S_{t}^{n}, where

$$
N_{i, j}^{m} \equiv p^{m i}+p^{m(i-1)}+\cdots+p^{m j}
$$

In case F possesses a subfield F^{\prime} of order p^{r}, there exists in S_{n}^{m} at least one n-subspace S_{n}^{r}, that is, a finite projective n-space, on which the points contained in a line are $p^{r}+1$ in number. The converse is also true.

The object of this note is to prove the following theorem.
In order to divide an S_{n}^{m} into several S_{n}^{r} such that one and only one S_{n}^{r} contains a given point, it is necessary and sufficient that r is a divisor of m and that m / r is relatively prime to $n+1$.

We first prove the necessity of the condition.
From the above remark, m is evidently divisible by r. By hypothesis every point of S_{n}^{m} is contained in one and only one S_{n}^{r}; we infer that $N_{n, 0}^{r}=\left(p^{r(n+1)}-1\right) /\left(p^{r}-1\right)$ is a divisor of $N_{n, 0}^{m}=\left(p^{m(n+1)}-1\right) /\left(p^{m}-1\right)$. Hence $(m / r, n+1)=1$ is a consequence of the following lemma.

Lemma. Let α, β, and $a>1$ be three natural integers;

$$
(a-1)\left(a^{\alpha \beta}-1\right) /\left(a^{\alpha}-1\right)\left(a^{\beta}-1\right)
$$

is an integer if and only if $(\alpha, \beta)=1$.
To prove this we note that $(\alpha, \beta)=1$ implies $\left(a^{\alpha}-1 ; \alpha^{\beta}-1\right)=a-1$, and both $a^{\alpha}-1$ and $a^{\beta}-1$ are divisors of $a^{\alpha \beta}-1$, so that

$$
(a-1)\left(a^{\alpha \beta}-1\right) /\left(a^{\alpha}-1\right)\left(a^{\beta}-1\right)
$$

is an integer.
Conversely, suppose that $(a-1)\left(a^{\alpha \beta}-1\right) /\left(a^{\alpha}-1\right)\left(a^{\beta}-1\right)$ is an integer. If on the contrary $(\alpha, \beta)>1$, on denoting a prime factor of (α, β) by q so that $\alpha=\gamma q$ and $\beta=\delta q$, we have

$$
\frac{(a-1)\left(a^{\alpha \beta}-1\right)}{\left(a^{\alpha}-1\right)\left(a^{\beta}-1\right)}=\frac{(a-1)\left(a^{\gamma q(\delta q-1)}+a^{\gamma q(\delta q-2)}+\cdots+a^{\gamma q}+1\right)}{a^{\delta q}-1}
$$

[^0]
[^0]: Received by editors August 2, 1948.
 ${ }^{1}$ O. Veblen and W. H. Bussey, Finite projective geometries, Trans. Amer. Math. Soc. vol. 7 (1906) p. 244.

