A THEOREM IN FINITE PROJECTIVE GEOMETRY

CHUNG-TAO YANG

It is known¹ that if F is a Galois field of order p^m and S_n^m a finite projective *n*-space over F, then each line of S_n^m passes through p^m+1 points and in S_n^m appear $(N_{n,0}^m N_{n,1}^m \cdots N_{n,t}^m)/(N_{t,0}^m N_{t,1}^m \cdots N_{t,t}^m)$ t-spaces S_t^m , where

$$N_{i,j}^{m} \equiv p^{mi} + p^{m(i-1)} + \dots + p^{mj}.$$

In case F possesses a subfield F' of order p^r , there exists in S_n^m at least one *n*-subspace S_n^r , that is, a finite projective *n*-space, on which the points contained in a line are p^r+1 in number. The converse is also true.

The object of this note is to prove the following theorem.

In order to divide an S_n^m into several S_n^r such that one and only one S_n^r contains a given point, it is necessary and sufficient that r is a divisor of m and that m/r is relatively prime to n+1.

We first prove the necessity of the condition.

From the above remark, *m* is evidently divisible by *r*. By hypothesis every point of S_n^m is contained in one and only one S_n^r ; we infer that $N_{n,0}^r = (p^{r(n+1)}-1)/(p^r-1)$ is a divisor of $N_{n,0}^m = (p^{m(n+1)}-1)/(p^m-1)$. Hence (m/r, n+1) = 1 is a consequence of the following lemma.

LEMMA. Let α , β , and a > 1 be three natural integers;

$$(a-1)(a^{\alpha\beta}-1)/(a^{\alpha}-1)(a^{\beta}-1)$$

is an integer if and only if $(\alpha, \beta) = 1$.

To prove this we note that $(\alpha, \beta) = 1$ implies $(a^{\alpha}-1; \alpha^{\beta}-1) = a-1$, and both $a^{\alpha}-1$ and $a^{\beta}-1$ are divisors of $a^{\alpha\beta}-1$, so that

$$(a-1)(a^{\alpha\beta}-1)/(a^{\alpha}-1)(a^{\beta}-1)$$

is an integer.

Conversely, suppose that $(a-1)(a^{\alpha\beta}-1)/(a^{\alpha}-1)(a^{\beta}-1)$ is an integer. If on the contrary $(\alpha, \beta) > 1$, on denoting a prime factor of (α, β) by q so that $\alpha = \gamma q$ and $\beta = \delta q$, we have

$$\frac{(a-1)(a^{\alpha\beta}-1)}{(a^{\alpha}-1)(a^{\beta}-1)}=\frac{(a-1)(a^{\gamma_{q}(\delta_{q}-1)}+a^{\gamma_{q}(\delta_{q}-2)}+\cdots+a^{\gamma_{q}}+1)}{a^{\delta_{q}}-1}.$$

Received by editors August 2, 1948.

¹ O. Veblen and W. H. Bussey, *Finite projective geometries*, Trans. Amer. Math. Soc. vol. 7 (1906) p. 244.