APPROXIMATION IN LIP (α, p)

PAUL CIVIN

Let L_p , $1 , denote the class of measurable functions of period <math>2\pi$ for which $(\int_{-\pi}^{\pi} |f(x)|^p dx)^{1/p} = M_p(f) < \infty$, and let Lip (α, p) , $0 < \alpha < \infty$, represent that subclass of L_p for which $(\int_{-\pi}^{\pi} |f(x+h) - f(x)|^p dx)^{1/p} = O(h^{-\alpha})$ as $h \to 0$. The object of the present note is to demonstrate the following theorem.

THEOREM. If $f(x) \in \text{Lip}(\alpha, p)$ and $\{P_n(x)\}$ is a sequence of trigonometric polynomials of order n such that

(1)
$$M_p(f-P_n) \leq K n^{-\alpha},$$

then

(2)
$$\left(\int_{-\pi}^{\pi} |P_{n}'(x)|^{p} dx\right)^{1/p} \leq \begin{cases} A(1-\alpha)^{-1}n^{1-\alpha}, & 0 < \alpha < 1, \\ A \log n, & \alpha = 1, \\ A(\alpha-1)^{-1}, & 1 < \alpha < \infty \end{cases}$$

where in each case A depends only on α and the sequence $P_n(x)$ but not on n.

The method is that of M. Zamansky¹ [2] who obtained the corresponding results for functions in Lip α , $0 < \alpha \leq 1$.

An application of the inequality of Zygmund [3] concerning the *p*th mean of the derivative of a trigonometric polynomial together with the Minkowski inequality shows that if (1) and (2) are satisfied by a sequence $\{P_{n_j}\}$ with $(n_{j+1}/n_j) = O(1)$ and if $\{\lambda_n\}$ is any sequence of trigonometric polynomials of order *n* such that $M_p(\lambda_n) = O(n^{-\alpha})$, then the sequence $\{P_{n_j}+\lambda_n\}$ $(n=n_j, n_j+1, \cdots, n_{j+1}-1; j=1, 2, \cdots)$ also satisfies (1) and (2). A further application of the same inequalities shows that if $\{P_n\}$ satisfies (1) and (2) and if $\{Q_n\}$ satisfies (1), then $\{Q_n\}$ also satisfies (2). The proof of the theorem is thus reduced to the exhibition of a sequence $\{P_{n_j}\}$ of trigonometric polynomials of order n_j with $(n_{j+1}/n_j) = O(1)$ such that (1) and (2) hold for $\{P_{n_j}\}$.

Let r be the smallest integer greater than $(1+\alpha)/2$ and q=p/(p-1). If $f(x) \in L_p$ and

$$u(r) = \int_{-\infty}^{\infty} (\sin t/t)^{2r} dt$$

Presented to the Society, November 27, 1948; received by the editors June 21, 1948.

¹ Numbers in brackets refer to the references at the end of the note.