APPROXIMATION IN LIP (α, p)

PaUl CIVIN

Let $L_{p}, 1<p<\infty$, denote the class of measurable functions of period 2π for which $\left(\int_{-\pi}^{\pi}|f(x)|^{p} d x\right)^{1 / p}=M_{p}(f)<\infty$, and let Lip (α, p), $0<\alpha<\infty$, represent that subclass of L_{p} for which $\left(\int_{-\pi}^{\pi} \mid f(x+h)\right.$ $\left.-\left.f(x)\right|^{p} d x\right)^{1 / p}=O\left(h^{-\alpha}\right)$ as $h \rightarrow 0$. The object of the present note is to demonstrate the following theorem.

Theorem. If $f(x) \in \operatorname{Lip}(\alpha, p)$ and $\left\{P_{n}(x)\right\}$ is a sequence of trigonometric polynomials of order n such that

$$
\begin{equation*}
M_{p}\left(f-P_{n}\right) \leqq K n^{-\alpha} \tag{1}
\end{equation*}
$$

then

$$
\left(\int_{-\pi}^{\pi}\left|P_{n}^{\prime}(x)\right|^{p} d x\right)^{1 / p} \leqq\left\{\begin{array}{lr}
A(1-\alpha)^{-1} n^{1-\alpha}, & 0<\alpha<1 \tag{2}\\
A \log n, & \alpha=1 \\
A(\alpha-1)^{-1}, & 1<\alpha<\infty
\end{array}\right.
$$

where in each case A depends only on α and the sequence $P_{n}(x)$ but not on n.

The method is that of M. Zamansky ${ }^{1}$ [2] who obtained the corresponding results for functions in $\operatorname{Lip} \alpha, 0<\alpha \leqq 1$.

An application of the inequality of Zygmund [3] concerning the p th mean of the derivative of a trigonometric polynomial together with the Minkowski inequality shows that if (1) and (2) are satisfied by a sequence $\left\{P_{n_{j}}\right\}$ with $\left(n_{j+1} / n_{j}\right)=O(1)$ and if $\left\{\lambda_{n}\right\}$ is any sequence of trigonometric polynomials of order n such that $M_{p}\left(\lambda_{n}\right)=O\left(n^{-\alpha}\right)$, then the sequence $\left\{P_{n_{j}}+\lambda_{n}\right\} \quad\left(n=n_{j}, n_{j}+1, \cdots, n_{j+1}-1 ; j=1,2, \cdots\right)$ also satisfies (1) and (2). A further application of the same inequalities shows that if $\left\{P_{n}\right\}$ satisfies (1) and (2) and if $\left\{Q_{n}\right\}$ satisfies (1), then $\left\{Q_{n}\right\}$ also satisfies (2). The proof of the theorem is thus reduced to the exhibition of a sequence $\left\{P_{n_{j}}\right\}$ of trigonometric polynomials of order n_{j} with $\left(n_{j+1} / n_{j}\right)=O(1)$ such that (1) and (2) hold for $\left\{P_{n_{j}}\right\}$.

Let r be the smallest integer greater than $(1+\alpha) / 2$ and $q=p /(p-1)$. If $f(x) \in L_{p}$ and

$$
u(r)=\int_{-\infty}^{\infty}(\sin t / t)^{2 r} d t
$$

[^0]
[^0]: Presented to the Society, November 27, 1948; received by the editors June 21, 1948.
 ${ }^{1}$ Numbers in brackets refer to the references at the end of the note.

