PROBABILITY METHODS IN SOME PROBLEMS OF ANALYSIS
AND NUMBER THEORY
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1. Introduction. In 1922 Rademacher [1]!introduced the functions
(1.1 r.(t) = sign sin 277, 0st=14,n=12-.-,

and proved that the series
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converges almost everywhere provided
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In 1925 Kolmogoroff and Khintchine [1] generalized this result and
also proved the counterpart to the effect that

(1.4) Z c: = o

1
implies divergence almost everywhere of (1.2). The probabilistic
nature of these results (first recognized by Steinhaus [1]) becomes
apparent when one notices that the Rademacher functions r,(s) are
statistically independent, that is, have the property that

(1.5) |E{n®) <oy - ,r@) <an}|= If[l E{n@®) < a}],?

for n=2, 3, - - - and all real a3, a3, - -

Following the natural line of development, Kolmogoroff [1; 2] was
led to his celebrated necessary and sufficient conditions (the “three
series theorem”) for convergence of series,

(1.6) if,,a),
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1 Numbers in brackets refer to the references cited at the end of the paper.

2 Here, as in the sequel, E{ } denotes the set of ¢'s satisfying the condition inside
the braces, and [A4] denotes the Lebesgue measure of the set 4.
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