ON A THEOREM OF H. CARTAN

RICHARD BRAUER

As an application of the Galois theory of skew fields, H. Cartan¹ obtained recently the following theorem: If K is a skew field of finite rank over its center C, the only skew fields H, $C \subseteq H \subseteq K$, which are mapped into themselves by every inner automorphism of K are K and C.

I give a very short and direct proof removing at the same time the finiteness assumption, In fact, we have:

THEOREM. If H is a skew field contained in the skew field K, and if every inner automorphism of K maps H into itself, then H is either K, or H belongs to the center of K.

PROOF. If $a \in K$, $b \in H$, the assumption shows that an equation

$$(1) ba = ab_1$$

with $b_1 \in H$ holds (for a = 0 this is true with $b_1 = b$). Also,

$$(2) b(1+a) = (1+a)b_2$$

with $b_2 \in H$. On subtracting (1) from (2), we find

$$b - b_2 = a(b_2 - b_1).$$

If a does not lie in H, this implies $b_2 = b_1$ and hence $b = b_2$. Then $b_1 = b$, that is, ba = ab. Every element a of K which does not belong to H commutes therefore with every element of H.

Suppose that H does not belong to the center of K. There exists an element b of H and an element c of K such that

$$(3) bc \neq cb.$$

The remark above shows that $c \in H$. If $H \neq K$, there exist elements a outside of H in K. Then a+c does not belong to H either. Hence a+c and a both commute with $b \in H$,

$$b(a+c) = (a+c)b, ba = ab.$$

These two equations are not consistent with (3), and the theorem is proved.

The same argument applies under much weaker assumptions. For instance, it is sufficient to assume that K is a (not necessarily associa-

Received by the editors May 27, 1948.

¹ C. R. Acad. Sci. Paris vol. 224 (1947) pp. 249-251.