A THEOREM ON DIFFERENCE POLYNOMIALS

RICHARD M. COHN

We shall prove the following analogue of a theorem of Kronecker's: Let \mathcal{J} be a difference field¹ containing an element t which is distinct from its transforms of any order. Every perfect ideal in the ring $\mathcal{J}[y_1, \dots, y_n]$ has a basis consisting of n+1 difference polynomials.

The corresponding theorem for differential polynomials was proved by J. F. Ritt.² We shall follow in all but details a brief and elegant proof of the theorem for differential equations which he has given recently.³

Let Λ be a perfect ideal in $\mathcal{F}[y_1, \dots, y_n]$. We know⁴ that Λ has a finite basis A_1, \dots, A_r . We adjoin to $\mathcal{F}[y_1, \dots, y_n]$ the (n+1)r additional variables $u_{ij}, i=1, \dots, n+1; j=1, \dots, r$, and consider the polynomials⁵

(1)
$$L_i = \sum_{j=1}^r u_{ij}A_j, \qquad i = 1, \cdots, n+1.$$

We shall show that there exists a nonzero polynomial H in the u_{ij} only, which vanishes for all solutions of the system (1) which do not annul every A_i . Our theorem will follow immediately from the existence of H. For I showed in my Dissertation⁶ that the presence of t in \mathcal{I} implies that we may assign to the u_{ij} values α_{ij} in \mathcal{I} which do not annul H. Let L_i become M_i , $i=1, \cdots, n+1$, when the u_{ij} are

Received by the editors April 29, 1948.

¹ For a definition of the terms used in the statement of this theorem the reader is referred to J. F. Ritt and H. W. Raudenbush, *Ideal theory and algebraic difference* equations, Trans. Amer. Math. Soc. vol. 46 (1939) pp. 445–452. The reader's attention is also called to the paper *Complete difference ideals* by J. F. Ritt, Amer. J. Math. vol. 63 (1941) p. 681, in which the definition of the term "difference ideal" is modified. It is the latter definition which is now in use. The symbol $\mathcal{J}[y_1, \dots, y_n]$ denotes the ring of all difference polynomials in the unknowns y_1, \dots, y_n , whose coefficients lie in the difference field \mathcal{J} .

² J. F. Ritt, Differential equations from the algebraic standpoint, Amer. Math. Soc. Colloquium Publications, vol. 14, pp. 50-58.

³ To appear in the forthcoming revised edition of *Differential equations from the algebraic standpoint*. This shorter proof does not furnish all details of the theorem established in the paper mentioned in footnote 2.

⁴ This is one of the principal results of the paper of Ritt and Raudenbush referred to in footnote 1.

⁵ We use the term "polynomial" as an abbreviation for "difference polynomial."

⁶ Manifolds of difference polynomials, Trans. Amer. Math. Soc. vol. 64 (1948) pp. 133–172. This paper is referred to below as M.D.P.