A THEOREM ON DIFFERENCE POLYNOMIALS

RICHARD M. COHN

We shall prove the following analogue of a theorem of Kronecker's:
Let 7 be a difference field ${ }^{1}$ containing an element t which is distinct from its transforms of any order. Every perfect ideal in the ring $\mathcal{F}\left[y_{1}, \cdots, y_{n}\right]$ has a basis consisting of $n+1$ difference polynomials.

The corresponding theorem for differential polynomials was proved by J. F. Ritt. ${ }^{2}$ We shall follow in all but details a brief and elegant proof of the theorem for differential equations which he has given recently. ${ }^{3}$

Let Λ be a perfect ideal in $\mathcal{F}\left[y_{1}, \cdots, y_{n}\right]$. We know ${ }^{4}$ that Λ has a finite basis A_{1}, \cdots, A_{r}. We adjoin to $\mathcal{f}\left[y_{1}, \cdots, y_{n}\right]$ the $(n+1) r$ additional variables $u_{i j}, i=1, \cdots, n+1 ; j=1, \cdots, r$, and consider the polynomials ${ }^{5}$

$$
\begin{equation*}
L_{i}=\sum_{j=1}^{r} u_{i j} A_{j}, \quad i=1, \cdots, n+1 \tag{1}
\end{equation*}
$$

We shall show that there exists a nonzero polynomial H in the $u_{i j}$ only, which vanishes for all solutions of the system (1) which do not annul every A_{i}. Our theorem will follow immediately from the existence of H. For I showed in my Dissertation ${ }^{6}$ that the presence of t in \mathcal{F} implies that we may assign to the $u_{i j}$ values $\alpha_{i j}$ in \mathcal{F} which do not annul H. Let L_{i} become $M_{i}, i=1, \cdots, n+1$, when the $u_{i j}$ are

[^0]
[^0]: Received by the editors April 29, 1948.
 ${ }^{1}$ For a definition of the terms used in the statement of this theorem the reader is referred to J. F. Ritt and H. W. Raudenbush, Ideal theory and algebraic difference equations, Trans. Amer. Math. Soc. vol. 46 (1939) pp. 445-452. The reader's attention is also called to the paper Complete difference ideals by J. F. Ritt, Amer. J. Math. vol. 63 (1941) p. 681, in which the definition of the term "difference ideal" is modified. It is the latter definition which is now in use. The symbol $\mathcal{f}\left[y_{1}, \cdots, y_{n}\right]$ denotes the ring of all difference polynomials in the unknowns y_{1}, \cdots, y_{n}, whose coefficients lie in the difference field \mathcal{F}.
 ${ }^{2}$ J. F. Ritt, Differential equations from the algebraic standpoint, Amer. Math. Soc. Colloquium Publications, vol. 14, pp. 50-58.
 ${ }^{3}$ To appear in the forthcoming revised edition of Differential equations from the algebraic standpoint. This shorter proof does not furnish all details of the theorem established in the paper mentioned in footnote 2.
 ${ }^{4}$ This is one of the principal results of the paper of Ritt and Raudenbush referred to in footnote 1.
 ${ }^{5}$ We use the term "polynomial" as an abbreviation for "difference polynomial."
 ${ }^{6}$ Manifolds of difference polynomials, Trans. Amer. Math. Soc. vol. 64 (1948) pp. 133-172. This paper is referred to below as M.D.P.

