REMARKS ON A PAPER BY ZEEV NEHARI

EINAR HILLE

In the preceding paper Zeev Nehari has proved some interesting inequalities for the Schwarzian derivative of a univalent ($=$ schlicht) function. Thus if $f(z)$ is univalent in the unit circle, then

$$
\begin{equation*}
|\{f(z), z\}| \leqq 6\left[1-|z|^{2}\right]^{-2} \tag{1}
\end{equation*}
$$

while if

$$
\begin{equation*}
|\{f(z), z\}| \leqq 2\left[1-|z|^{2}\right]^{-2} \tag{2}
\end{equation*}
$$

then $f(z)$ is univalent for $|z|<1$. The object of the present note is to show that 2 is the best possible constant in (2) in the following sense:

For every $C>2$ there exists a function $f(z)$ such that for $|z|<1$ we have (i) $f(z)$ is holomorphic, (ii) $f(z)$ takes on the value one infinitely often, and (iii) $|\{f(z), z\}| \leqq C\left[1-|z|^{2}\right]^{-2}$ with equality for real values of z.

An explicit example of such a function is given by

$$
\begin{equation*}
f(z)=\left(\frac{1-z}{1+z}\right)^{\gamma i} \tag{3}
\end{equation*}
$$

where γ is a real constant, $f(0)=1$, and $C=2\left(1+\gamma^{2}\right)$.
In view of the background of the problem, the following approach is natural. Let F_{a} denote the family of fractional linear transforms with constant coefficients of the quotient of two linearly independent solutions of the differential equation,

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+a\left(1-z^{2}\right)^{-2} y=0 \tag{4}
\end{equation*}
$$

where a is an arbitrary parameter. If $f(z) \in F_{a}$, then

$$
\{f(z), z\}=2 a\left(1-z^{2}\right)^{-2}
$$

If one function $f(z)$ of F_{a} is univalent in the unit circle, then they all are. Let us determine the region U of the a-plane such that if $a \in U$, then the functions of F_{a} are univalent for $|z|<1$. By Nehari's Theorem I the region $|a| \leqq 1$ belongs to U and (1) makes it plausible that U is contained in $|a| \leqq 3$.

Equation (4) has elementary solutions. The indicial equations at

[^0] 1948.

[^0]: Presented to the Society, September 10, 1948; received by the editors July 16,

