REMARKS ON CYCLIC ADDITIVITY

J. W. T. YOUNGS¹

1. Introduction. For the purposes of this discussion suppose that X and Y are topological spaces while G is a commutative, topological semi-group (with zero element) which, as a space, is Hausdorff. In other words, each pair (g_1, g_2) of elements in G uniquely determines an element (g_1+g_2) in G; the operation + is associative and commutative; there is a unique element 0 such that $g \in G$ implies g+0=g; finally, G is a Hausdorf space and the operation + provides a mapping (=continuous transformation) from the product space $G \times G$ into G. Obviously, topological groups, and the space of non-negative real numbers compactified by the addition of ∞ , with the operation + meaning addition, and the convention that $a+\infty = \infty + a = \infty$, provide examples of such semi-groups.

It will be said that lm is a *Peanian factorization* of a mapping $f: X \rightarrow Y$ if and only if there are mappings $m: X \rightarrow \mathfrak{X}$ and $l: \mathfrak{X} \rightarrow Y$ such that \mathfrak{X} is a Peano space and the composition lm is f. The space \mathfrak{X} is called the *middle space* of the Peanian factorization lm of f.

Let F be the class of mappings $f: X \to Y$ each of which has at least one Peanian factorization, and suppose that γ is a transformation from F into G.

For each Peano space \mathfrak{X} let $\mathcal{E}(\mathfrak{X})$ be the class of true cyclic elements of \mathfrak{X} . (See Whyburn [6] for the Peano space theory involved in this paper.)² If $\mathfrak{E} \in \mathcal{E}(\mathfrak{X})$ there is a unique monotone retraction $r_{\mathfrak{E}}: \mathfrak{X} \longrightarrow \mathfrak{E}$. (The double arrow indicates that $r_{\mathfrak{E}}(\mathfrak{X}) = \mathfrak{E}$.) If $f \in F$ and lm is a Peanian factorization of f with middle space \mathfrak{X} , while $\mathfrak{E} \in \mathcal{E}(\mathfrak{X})$, then define $f_{\mathfrak{E}} = lr_{\mathfrak{E}}m$.

It is the object of this paper to investigate the statement

(1)
$$\gamma(f) = \sum \gamma(f_{\mathfrak{G}}), \qquad \mathfrak{G} \in \mathcal{E}(\mathfrak{X})$$

where the equality means that for each neighborhood U of $\gamma(f)$ there is a finite subclass $\mathcal{J}(U)$ of $\mathcal{E}(\mathfrak{X})$ such that if \mathcal{J} is any finite subclass of $\mathcal{E}(\mathfrak{X})$ containing $\mathcal{J}(U)$ then $U \ni \sum \gamma(f_{\mathfrak{E}})$, $\mathfrak{E} \in \mathcal{J}$, it being understood that addition over an empty class yields 0.

In the event that (1) holds for each $f \in F$ and for each Peanian factorization of f, then γ is said to be *cyclicly additive*.

Cyclic additivity theorems of a weaker type have been considered

Received by the editors April 11, 1948.

¹ Fellow of the John Simon Guggenheim Memorial Foundation.

² Numbers in brackets refer to the bibliography at the end of the paper.