SPACES OF CONTINUOUS FUNCTIONS

S. B. MYERS

Let X be a completely regular topological space, B(X) the Banach space of real-valued bounded continuous functions on X, with the usual norm $||b|| = \sup_{x \in X} |b(x)|$. A subset $G \subset B(X)$ is called completely regular (c.r.) over X if given any closed subset $K \subset X$ and point $x_0 \in X - K$, there exists a $b \in G$ such that $b(x_0) = ||b||$ and $\sup_{x \in K} |b(x)| < ||b||$. A topological space X is completely regular in the usual sense if and only if B(X) is c.r. over X.

A Banach space B is said to act completely regularly (c.r.) on X if B is equivalent to a closed linear subspace of B(X) which is c.r. over X. It is known [6]¹ that if X is compact,² a closed linear subspace of B(X) c.r. over X determines the topology of X. By this is meant that if X_1 and X_2 are compact, and a Banach space B acts c.r. on both X_1 and X_2 , then X_1 is homeomorphic to X_2 . If B acts c.r. on X (compact or not), X is homeomorphically imbeddable in the surface of the unit sphere in B_w^* , the conjugate space to B under the weak-* topology, and for each $b \in B$ and $x \in X$ we have the formula $b(x) = \inf_{t \in T} [||b+t|| - ||t||]$, where $T = \{t \in B | t(x) = ||t|| \}$.

If we weaken the definition of complete regularity so that G is c.r. over X means that for every closed set $K \subset X$ and point $x_0 \in X - K$ there is a $b \in G$ such that $b(x_0) = ||b||$, $\sup_{x \in K} b(x) < ||b||$, then a closed linear subspace of B(X) c.r. over X does not necessarily determine the topology of X. For example, if X consists of just two points, x_1 and x_2 , then the subspace G of B(X) consisting of all $b \in B(X)$ such that $b(x_1) = -b(x_2)$ is c.r. over X according to the weakened definition, yet it is equivalent to the space B(Y), where Y consists of a single point.

Proper closed linear subspaces of B(X) which are c.r. over X exist in general for both compact and non-compact X, and may contain the constant functions. This is in contrast to the situation when B(X) is made into a normed ring (Banach algebra) R(X) or into a Banach lattice L(X); if X is compact, no proper closed subring of R(X) containing the constant functions can be c.r. over X [8], and no proper closed sublattice of L(X) containing the constant functions can be c.r. over X [4].

Since topological properties of X must be reflected in metric and

Presented to the Society, February 28, 1948; received by the editors April 5, 1948.

¹ Numbers in brackets refer to the bibliography at the end of the paper.

² "Compact" means bicompact and Hausdorff.