ORTHOGONALITY PROPERTIES OF C-FRACTIONS

EVELYN FRANK

1. Introduction. It has been indicated in the work of Tchebichef and Stieltjes that the denominators $D_{p}(z)$ of the successive approximants of a J-fraction

$$
\begin{equation*}
\frac{b_{0}}{d_{1}+z}-\frac{b_{1}}{d_{2}+z}-\frac{b_{2}}{d_{3}+z}-\cdots \tag{1.1}
\end{equation*}
$$

constitute a sequence of orthogonal polynomials. The orthogonality relations which exist between the $D_{p}(z)$ may be expressed in the following way (cf. [4, 7]). ${ }^{1}$ Let S^{\prime} be defined as the operator which replaces every z^{p} by c_{p} in any polynomial upon which it operates, where the $\left\{c_{p}\right\}$ are a given sequence of constants. Then the orthogonality relations

$$
S^{\prime}\left(D_{p}(z) D_{q}(z)\right) \begin{cases}=0 & \text { for } \quad p \neq q \tag{1.2}\\ \neq 0 & \text { for } \quad p=q\end{cases}
$$

hold relative to the operator S^{\prime} and the sequence $\left\{c_{p}\right\}$. The polynomials $D_{p}(z)$ are given recurrently by the formulas $D_{0}(z)=1$, $D_{p}(z)=\left(d_{p}+z\right) D_{p-1}(z)-b_{p-1} D_{p-2}(z), p=1,2, \cdots\left(D_{-1}(z)=0\right)$.

In this paper orthogonality relations similar to (1.2) are developed for the polynomials $B_{p}^{*}(z)$ which are derived from the denominators $B_{p}(z)$ of the successive approximants of a C-fraction

$$
\begin{equation*}
1+\frac{a_{1} z^{\alpha_{1}}}{1}+\frac{a_{2} z^{\alpha_{2}}}{1}+\frac{a_{3} z^{\alpha_{3}}}{1}+\cdots \tag{1.3}
\end{equation*}
$$

where the a_{p} denote complex numbers and the α_{p} positive integers (cf. [3]). In fact, conditions (1.2) for a certain J-fraction are shown to be a specialization of the orthogonality relations for a C-fraction. Furthermore, necessary and sufficient conditions are obtained for the unique existence of the polynomials $B_{p}^{*}(z)$ in terms of the sequence $\left\{c_{p}\right\}$ (Theorem 2.2).
2. Orthogonal polynomials constructed from the denominators of the approximants of a C-fraction. Let $A_{p}(z)$ and $B_{p}(z)$ denote the numerator and denominator, respectively, of the p th approximant

[^0]
[^0]: Presented to the Society, December 31, 1947, and February 28, 1948; received by the editors March 31, 1948.
 ${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.

