A SUBSTITUTE FOR THE PICONE FORMULA

WALTER LEIGHTON

It has been known for a number of years that the calculus of variations affords a powerful tool for the study of the oscillation of solutions of self-adjoint differential systems.¹ It is the purpose of the present paper to demonstrate how it can be used to replace and extend the Picone theorem.²

Consider the pair of self-adjoint differential equations

(1.1)
$$\frac{d}{dx}(ru') + pu = 0,$$

(1.2)
$$\frac{d}{dx}(r_1u') + p_1u = 0,$$

where, for definiteness, it is assumed that r(x), $r_1(x)$, r'(x), $r'_1(x)$, p(x), $p_1(x)$ are continuous with r and r_1 positive on the interval $a \leq x \leq b$. With these equations we associate the functional identity

(2)
$$\int_{a}^{b} [(r-r_{1})u'^{2} + (p_{1}-p)u^{2}]dx$$
$$= ruu' \Big|_{a}^{b} - \int_{a}^{b} u[(ru')' + pu]dx - \int_{a}^{b} [r_{1}u'^{2} - p_{1}u^{2}]dx.$$

The proof of (2) requires simply the integration by parts of the term ru'^2 in its left-hand member. In what follows it is convenient to *admit* to our discussion functions³ u(x) of class C' on the interval $a \le x \le b$ which vanish at a and b.

Repeated use is made of the following well known result.⁴

LEMMA. If there exists an admissible curve y = y(x) along which

(3)
$$J = \int_{a}^{b} (Ry'^{2} - Py^{2}) dx < 0,$$

¹ See, for example, Morse [2, Chap. IV]. Numbers in brackets refer to the bibliography at the end of the paper.

² Cf. Bôcher [1, p. 54], Ince [1, p. 225].

³ A function is said to be of class C' on an interval $a \leq x \leq b$ if it is continuous and has a continuous derivative on $a \leq x \leq b$.

⁴ Cf. Morse [2, chap. 2].

Presented to the Society, September 10, 1948; received by the editors April 15, 1948.