ON THE MEAN MODULUS OF AN ANALYTIC FUNCTION

E. F. BECKENBACH, W. GUSTIN, AND H. SHNIAD

Throughout this paper f=f(z) will denote an analytic function of the complex variable z in the open unit circle |z| < 1. The circle C(r), on which |z| = r, of radius $r \ge 0$ about the origin z = 0 lies in the region of analyticity of f provided r < 1. For every positive real parameter t ($0 < t < \infty$) the mean of order t of the modulus of f on the circle C(r) is defined as

(1)
$$M_{\iota}(r;f) = \left[\frac{1}{2\pi}\int_{0}^{2\pi} \left| f(re^{i\theta}) \right|^{\iota} d\theta \right]^{1/\iota}.$$

For fixed f and r this mean modulus $M_t(r; f)$ as a function of t is continuous, nonnegative, nondecreasing, and is bounded above by the maximum modulus of f on C(r) [1, 2].¹ Therefore the limit of $M_t(r; f)$ exists as $t \to 0$ and $t \to \infty$. This limit is defined to be the mean modulus of f on C(r) of order 0 and of order ∞ respectively. It may be shown that the mean modulus of order 0 is the geometric mean of the modulus of f on C(r), which is simply evaluated by Jensen's formula, and that the mean modulus of order ∞ is the maximum modulus of f on C(r) [1, 2]. Thus $M_t(r; f)$ is defined for all parameters t in the compact infinite interval $0 \le t \le \infty$.

For fixed f and t $(0 \le t \le \infty)$ the mean modulus $M_t(r; f)$ as a function of r in the interval $0 \le r < 1$ is continuous, nonnegative, nondecreasing, and, except for the limiting parameters 0 and ∞ , possesses a continuous derivative with respect to r[1, 3]. Moreover, its logarithm is a nondecreasing convex function of log r (for $t = \infty$ this is the Hadamard three-circle theorem) [1, 3].

We shall be concerned here with the convexity of the mean modulus $M_t(r; f)$ as a function of r. Let T(f) be the set of all parameters t in the compact infinite interval $0 \le t \le \infty$ such that $M_t(r; f)$ is a convex function of r in the interval $0 \le r < 1$. Since $M_t(r; f)$ is continuous with respect to the parameter t and since any function which is the limit of convex functions is also convex, the set T(f) is a closed and hence compact subset of the parameter interval $0 \le t \le \infty$. The set T(f) need not, however, coincide with the entire parameter interval and indeed

Presented to the Society, December 30, 1947; received by the editors February 16, 1948.

¹ Numbers in brackets refer to the references cited at the end of the paper.