THE ASYMPTOTIC DISTRIBUTION OF THE SUM OF A RANDOM NUMBER OF RANDOM VARIABLES

HERBERT ROBBINS

1. Introduction. If a random variable (r. v.) Y is the sum of a large but constant number N of independent components

$$(1) Y = X_1 + \cdots + X_N,$$

then under appropriate conditions on the X_j it follows from the central limit theorem that the distribution of Y will be nearly normal. In many cases of practical importance, however, the number N is itself a r. v., and when this is so the situation is more complex.

We shall consider the case in which the X_j $(j=1, 2, \cdots)$ are independent r. v.'s with the same distribution function (d. f.) $F(x) = P[X_j \le x]$, and in which the non-negative integer-valued r. v. N is independent of the X_j . The d. f. of N we shall assume to depend on a parameter λ , so that the d. f. of Y is a function of λ which may have an asymptotic expression as $\lambda \rightarrow \infty$. In the degenerate case in which for any integer λ , N is certain to have the value λ , the problem reduces to the ordinary central limit problem for equi-distributed components.

In the general case the d. f. of N for any λ is determined by the values $\omega_k = P[N=k]$ $(k=0, 1, \cdots)$, where the ω_k are functions of λ such that for all λ ,

$$\omega_k \geq 0, \qquad \sum_{0}^{\infty} \omega_k = 1.$$

We shall use Greek letters to denote functions of the parameter λ ; in particular we define

$$\alpha = E(N) = \sum_{0}^{\infty} \omega_{k} \cdot k,$$

$$\beta^{2} = E(N^{2}) = \sum_{0}^{\infty} \omega_{k} \cdot k^{2} \quad \text{(assumed finite for all } \lambda),$$

$$\gamma^{2} = \text{Var } (N) = \sum_{0}^{\infty} \omega_{k} \cdot (k - \alpha)^{2} = \beta^{2} - \alpha^{2},$$

$$\theta(t) = E(e^{i(N-\alpha)t/\gamma}) = \sum_{0}^{\infty} \omega_{k} \cdot e^{i(k-\alpha)t/\gamma},$$

Received by the editors January 12, 1948.