ON THE HOMOTOPY TYPE OF ANR'S

J. H. C. WHITEHEAD

1. Introduction. If X and Y are any spaces and if $f: X \to Y$ and $g: Y \to X$ are maps such that $gf \simeq 1$, then g is called a *left homotopy inverse* of f and f a right homotopy inverse¹ of g. In this case we shall say that Y dominates² X. If Y dominates X and Z dominates Y then it is easily verified that Z dominates X. If g is both a right and left homotopy inverse of f it is called a homotopy inverse of f and f will be called a homotopy equivalence. Thus the assertion that $f: X \to Y$ is a homotopy equivalence claims that X and Y are of the same homotopy type and, moreover, that f has a homotopy inverse.

Two maps, $f_0, f_1: X \to Y$ are said (cf. [1, pp. 49, 50] and [2, p. 344]) to be *n*-homotopic if, and only if, $f_0 \phi \simeq f_1 \phi$ for every map, $\phi: P \to X$, of every (finite) polyhedron, *P*, of at most *n* dimensions. By an *n*-homotopy inverse of a map, $f: X \to Y$, or an *n*-homotopy equivalence we mean the same as a homotopy inverse or a homotopy equivalence with homotopy replaced by *n*-homotopy throughout the definition.

By a CR-space we shall mean a connected compactum, which is an ANR (absolute neighborhood retract). Any CR-space, X, is dominated by a finite simplicial complex [5, Theorems 12.2, 16.2, pp. 93, 99], even if its dimensionality is infinite. We shall use ΔX to denote the minimum dimensionality of all (finite, simplicial) complexes which dominate X. Then $\Delta X \leq \dim X$ and we may think of ΔX as a kind of "quasi-dimensionality," noticing, however, that ΔX may be less than dim X, even if X is itself a finite polyhedron.

Let X, Y be CR-spaces, and let $N = \max(\Delta X, \Delta Y)$. Let $f: X \to Y$ be a given map and let $f_n: \pi_n(X) \to \pi_n(Y)$ be the homomorphism induced by f. If f is a homotopy equivalence then f_n is an isomorphism onto for each $n \ge 1$. In §3 below we prove a sharper theorem than the converse, namely:

THEOREM 1. If $f_n: \pi_n(X) \to \pi_n(Y)$ is an isomorphism onto for each $n = 1, \dots, N$, then $f: X \to Y$ is a homotopy equivalence.³

Received by the editors January 26, 1948.

¹ Cf. [1]. Numbers in brackets refer to the references cited at the end of the paper.

² In this case the homomorphisms $H_n(Y) \to H_n(X)$ induced by $g: Y \to X$ are all onto, likewise the induced homomorphisms $\pi_n(Y) \to \pi_n(X)$, assuming X, Y to be arcwise connected. In fact $H_n(Y)$, or $\pi_n(Y)$ ($n \ge 2$), may be represented as the direct sum of $H_n(X)$, or $\pi_n(X)$, and the kernel of this homomorphism.

³ If X and Y are of the same homotopy type, then each dominates the other and $\Delta X = \Delta Y$. Theorem 1 is formulated with a view to applications in which it is possible to calculate separate upper bounds for ΔX , ΔY (for example, dim X, dim Y).