ON THE HOMOTOPY TYPE OF ANR'S

J. H. C. WHITEHEAD

1. Introduction. If X and Y are any spaces and if $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are maps such that $g f \simeq 1$, then g is called a left homotopy inverse of f and f a right homotopy inverse ${ }^{1}$ of g. In this case we shall say that Y dominates ${ }^{2} X$. If Y dominates X and Z dominates Y then it is easily verified that Z dominates X. If g is both a right and left homotopy inverse of f it is called a homotopy inverse of f and f will be called a homotopy equivalence. Thus the assertion that $f: X \rightarrow Y$ is a homotopy equivalence claims that X and Y are of the same homotopy type and, moreover, that f has a homotopy inverse.

Two maps, $f_{0}, f_{1}: X \rightarrow Y$ are said (cf. [1, pp. 49, 50] and [2, p. 344]) to be n-homotopic if, and only if, $f_{0} \phi \simeq f_{1} \phi$ for every map, $\phi: P \rightarrow X$, of every (finite) polyhedron, P, of at most n dimensions. By an n-homotopy inverse of a map, $f: X \rightarrow Y$, or an n-homotopy equivalence we mean the same as a homotopy inverse or a homotopy equivalence with homotopy replaced by n-homotopy throughout the definition.

By a CR-space we shall mean a connected compactum, which is an ANR (absolute neighborhood retract). Any CR-space, X, is dominated by a finite simplicial complex [5, Theorems $12.2,16.2, \mathrm{pp} .93$, 99], even if its dimensionality is infinite. We shall use ΔX to denote the minimum dimensionality of all (finite, simplicial) complexes which dominate X. Then $\Delta X \leqq \operatorname{dim} X$ and we may think of ΔX as a kind of "quasi-dimensionality," noticing, however, that ΔX may be less than $\operatorname{dim} X$, even if X is itself a finite polyhedron.

Let X, Y be CR-spaces, and let $N=\max (\Delta X, \Delta Y)$. Let $f: X \rightarrow Y$ be a given map and let $f_{n}: \pi_{n}(X) \rightarrow \pi_{n}(Y)$ be the homomorphism induced by f. If f is a homotopy equivalence then f_{n} is an isomorphism onto for each $n \geqq 1$. In §3 below we prove a sharper theorem than the converse, namely:

Theorem 1. If $f_{n}: \pi_{n}(X) \rightarrow \pi_{n}(Y)$ is an isomorphism onto for each $n=1, \cdots, N$, then $f: X \rightarrow Y$ is a homotopy equivalence. ${ }^{3}$

[^0]
[^0]: Received by the editors January 26, 1948.
 ${ }^{1}$ Cf. [1]. Numbers in brackets refer to the references cited at the end of the paper.
 ${ }^{2}$ In this case the homomorphisms $H_{n}(Y) \rightarrow H_{n}(X)$ induced by $g: Y \rightarrow X$ are all onto, likewise the induced homomorphisms $\pi_{n}(Y) \rightarrow \pi_{n}(X)$, assuming X, Y to be arcwise connected. In fact $H_{n}(Y)$, or $\pi_{n}(Y)(n \geqq 2)$, may be represented as the direct sum of $H_{n}(X)$, or $\pi_{n}(X)$, and the kernel of this homomorphism.
 ${ }^{3}$ If X and Y are of the same homotopy type, then each dominates the other and $\Delta X=\Delta Y$. Theorem 1 is formulated with a view to applications in which it is possible to calculate separate upper bounds for $\Delta X, \Delta Y$ (for example, $\operatorname{dim} X, \operatorname{dim} Y$).

