NOTE ON A THEOREM DUE TO BORSUK

J. H. C. WHITEHEAD

1. Introduction. Let $A, B \subset A$ and B^{\prime} be compacta, which are ${ }^{1}$ ANR's (absolute neighbourhood retracts). Let $B^{\prime} \subset A^{\prime}$ where A^{\prime} is a compactum, and let $f:(A, B) \rightarrow\left(A^{\prime}, B^{\prime}\right)$ be a map such that $f \mid(A-B)$ is a homeomorphism onto $A^{\prime}-B^{\prime}$. Thus A^{\prime} is homeomorphic to the space defined in terms of A, B, B^{\prime} and the map $g=f \mid B$ by identifying each point $b \in B$ with $g b \in B^{\prime}$. K. Borsuk [3] has shown that A^{\prime} is locally contractible. It is therefore an ANR if $\operatorname{dim} A^{\prime}<\infty$. The main purpose of this note is to prove, without this restriction on $\operatorname{dim} A^{\prime}$:

Theorem 1. A^{\prime} is an $A N R$.
We also derive some simple consequences of this theorem. For example, it follows that the homotopy extension theorem, in the form in which the image space is arbitrary, may be extended ${ }^{2}$ from maps of polyhedra to maps of compact ANR's, P and $Q \subset P$. That is to say, if $f_{0}: P \rightarrow X$ is a given map, the space X being arbitrary, and if $g_{t}: Q \rightarrow X$ is a deformation of $g_{0}=f_{0} \mid Q$, then there is a homotopy $f_{t}: P \rightarrow X$, such that $f_{t} \mid Q=g_{t}$. For let $R=(P \times 0) \cup(Q \times I) \subset P \times I$ andlet $h: R \rightarrow X$ be given by $h(p, 0)=f_{0} p, h(q, t)=g_{t} q(p \in P, q \in Q)$. Since $Q \times I$ is (obviously) a compact ANR it follows from Theorem 1, with $A=Q \times I, B=Q \times 0, B^{\prime}=P \times 0, A^{\prime}=R$ that R is an ANR. Therefore R is a retract of some open set $U \subset P \times I$. If $\theta: U \rightarrow R$ is a retraction, then $h \theta: U \rightarrow X$ is an extension of $h: R \rightarrow X$ throughout U. This is all we need for the homotopy extension theorem (see [5, pp. 86, 87]). Thus we have the corollary:

Corollary. A given homotopy, $g_{i}: Q \rightarrow X$, of $g_{0}=f_{0} \mid Q$, can be extended to a homotopy, $f_{t}: P \rightarrow X$, where P and $Q \subset P$ are compact $A N R ' s$ and $f_{0}: P \rightarrow X$ is a given map of P in an arbitrary space X.

We also use Theorem 1 to prove another theorem. We shall describe a $\operatorname{map} \xi: X \rightarrow Y$ as a homotopy equivalence if, and only if, there is a map, $\eta: Y \rightarrow X$, such that $\eta \xi \simeq 1, \xi \eta \simeq 1$, where X and Y are any two spaces. Thus the statement that $\xi: X \rightarrow Y$ is a homotopy equivalence implies that X and Y are of the same homotopy type. Let $A, B, A^{\prime}, B^{\prime}$ and $f:(A, B) \rightarrow\left(A, B^{\prime}\right)$ be as in Theorem 1 and let $g=f \mid B$.

[^0]
[^0]: Received by the editors January 26, 1948.
 ${ }^{1}$ For an account of these spaces, on which this note is based, see [2]. Numbers in brackets refer to the references cited at the end of the paper.
 ${ }^{2}$ Cf. [4].

