$$
C_{n}=\bigcup_{j=0}^{n}\left(\text { closure } R_{j}\right) \cup\left\{S \sim \bigcup_{j=0}^{\infty}\left(\text { closure } R_{j}\right)\right\}
$$

Clearly, for each integer n,

$$
\bigcup_{j=0}^{\infty} C_{j}=S . \quad C_{n} \subset C_{n+1} \in F
$$

After checking the hereditariness of F, we infer from 4.2 that each open set is ϕ measurable F. Hence, if we recall $3.5, C_{n}$ is ϕ measurable F for each integer n. Thus F is ϕ convenient. Reference to 4.3 completes the proof.

University of California

ON THE DISTRIBUTION OF THE VALUES OF $|f(z)|$ IN THE UNIT CIRCLE

ROBERT BREUSCH

1. Summary. Let $f(z)=1+a_{1} z+\cdots$ be analytic for $|z| \leqq 1$, $f(z) \neq 1$. Then $|f(z)|$ will be greater than 1 at some points of the unit circle, and less than 1 at others. Calling $A(f)$ the area of the set of points within the unit circle, for which $|f(z)| \geqq 1$, let α and β be the two largest non-negative constants such that $\alpha \leqq A(f) \leqq \pi-\beta$, for every $f(z)$. It is shown that $\alpha=\beta=0$; in other words, if ϵ is arbitrarily small positive, there are functions $f(z)$ such that $A(f)<\epsilon$, and others such that $A(f)>\pi-\epsilon$. The same is true, if $f(z)$ is restricted to polynomials $\prod_{\nu=1}^{n}\left(z-z_{\nu}\right)$ with $\coprod_{\nu=1}^{n}\left|z_{\nu}\right|=1$. These statements will be proved in $\S 2$. $\S 3$ contains a few additional results, given without proofs.
2. Proofs. The statements made in the summary are contained in the following theorem.

Theorem. Let P stand for the set of polynomials over the complex field of the form $f(z)=\prod_{\nu=1}^{n}\left(z-z_{\nu}\right)$, with $\prod_{\nu=1}^{n}\left|z_{\nu}\right|=1$; let $A(f)$ denote the area of the set of points in the unit circle, for which $|f(z)| \geqq 1$; let ϵ be an arbitrarily small positive number. Then P contains polynomials $f_{1}(z)$ and $f_{2}(z)$ such that $A\left(f_{1}\right)>\pi-\epsilon$, and $A\left(f_{2}\right)<\epsilon$.

[^0]
[^0]: Presented to the Society, December 31, 1947; received by the editors January 7, 1948.

