PARACOMPACTNESS AND PRODUCT SPACES

A. H. STONE

A topological space is called paracompact (see [2]) ${ }^{1}$ if (i) it is a Hausdorff space (satisfying the T_{2} axiom of [1]), and (ii) every open covering of it can be refined by one which is "locally finite" (= neigh-bourhood-finite; that is, every point of the space has a neighbourhood meeting only a finite number of sets of the refining covering). J. Dieudonné has proved [2, Theorem 4] that every separable metric (=metrisable) space is paracompact, and has conjectured that this remains true without separability. We shall show that this is indeed the case. In fact, more is true: paracompactness is identical with the property of "full normality" introduced by J. W. Tukey [5, p. 53]. After proving this (Theorems 1 and 2 below) we apply Theorem 1 to obtain a necessary and sufficient condition for the topological product of uncountably many metric spaces to be normal (Theorem 4).

For any open covering $\mathscr{W}=\left\{W_{\alpha}\right\}$ of a topological space, the star (x, \mathscr{W}) of a point x is defined to be the union of all the sets W_{α} which contain x. The space is fully normal if every open covering U of it has a " Δ-refinement" W-that is, an open covering for which the stars (x, \mathcal{W}) form a covering which refines U.

Theorem 1. Every fully normal T_{1} space is paracompact.
Let S be such a space, and let $V=\left\{U_{\alpha}\right\}$ be a given open covering of S. (We must construct a locally finite refinement of \mathcal{U}. Note that S is normal [5, p. 49] and thus satisfies the T_{2} axiom.)

There exists an open covering $V^{1}=\left\{U^{1}\right\}$ which Δ-refines V, and by induction we obtain open coverings $\mathcal{U}^{n}=\left\{U^{n}\right\}$ of S such that $\mathcal{U}^{n+1} \Delta$-refines $\cup^{n}(n=1,2, \cdots$, to $\infty)$. For brevity we write, for any $X \subset S$,

$$
\begin{align*}
(X, n) & =\operatorname{star} \text { of } X \text { in } U^{n} \\
& =\text { union of all sets } U^{n} \text { meeting } X \tag{1}
\end{align*}
$$

(roughly corresponding to the " $1 / 2^{n}$-neighbourhood of X " in a metric space), and

$$
\begin{equation*}
(X,-n)=S-(S-X, n) \tag{2}
\end{equation*}
$$

[^0]
[^0]: Presented to the Society, October 25, 1947; received by the editors October 25, 1947.
 ${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.

