ON THE DIFFERENCE OF CONSECUTIVE PRIMES

P. ERDÖS

The present paper contains some elementary results on the difference of consecutive primes. Theorem 2 has been announced in a previous paper.¹ Also some unsolved problems are stated.

Let $p_1=2$, $p_2=3$, \cdots , p_k , \cdots be the sequence of consecutive primes. Put $d_k = p_{k+1} - p_k$. We have:

THEOREM 1. There exist positive real numbers c_1 and c_2 , $c_1 < 1$, $c_2 < 1$, such that for every n the number of k's satisfying both

(1)
$$d_{k+1} > (1 + c_1)d_k, \qquad k \leq n,$$

and the number of l's satisfying both

(2) $d_{l+1} < (1 - c_1)d_l, \qquad l \leq n,$

are each greater than c_2n .

We shall prove Theorem 1 later. From Theorem 1 we easily deduce:

THEOREM 2. For every t and all sufficiently large n the number of solutions in k and l of each of the two sets of inequalities

(3)
$$\left(\frac{p_{k+1}^{t}+p_{k-1}^{t}}{2}\right)^{1/t} > p_{k}, k \leq n; \quad \left(\frac{p_{l+1}^{t}+p_{l-1}^{t}}{2}\right)^{1/t} < p_{l}, l \leq n,$$

is greater than $(c_2/2)n$.

Let ϵ be sufficiently small but fixed. It is well known that $p_n < 2 \cdot n$ log *n*. Thus the number of $k \leq n$, with $p_{k+1} > (1+\epsilon)p_k$, is less than *c* log *n*. Hence it follows from Theorem 1 that the number of *k*'s satisfying

(4)
$$p_{k+1} < (1 + \epsilon)p_k, \quad d_k > (1 + c_1)d_{k-1}, \quad k \leq n,$$

is greater than $(c_2/2)n$. A simple calculation now shows that the primes satisfying (4) also satisfy the first inequality of (3) if $\epsilon = \epsilon(c_1)$ is chosen small enough. The second inequality of (3) is proved in the same way, which proves Theorem 2.

Further, we obtain, as an immediate corollary of Theorem 1, that²

Received by the editors October 17, 1947.

¹ P. Erdös and P. Turán, Some new questions on the distribution of primes, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 371–378.

² This result was also stated in the above paper.