ON THE DIFFERENCE OF CONSECUTIVE PRIMES

P. ERDÖS

The present paper contains some elementary results on the difference of consecutive primes. Theorem 2 has been announced in a previous paper. ${ }^{1}$ Also some unsolved problems are stated.
Let $p_{1}=2, p_{2}=3, \cdots, p_{k}, \cdots$ be the sequence of consecutive primes. Put $d_{k}=p_{k+1}-p_{k}$. We have:
Theorem 1. There exist positive real numbers c_{1} and $c_{2}, c_{1}<1, c_{2}<1$, such that for every n the number of k 's satisfying both

$$
\begin{equation*}
d_{k+1}>\left(1+c_{1}\right) d_{k}, \quad k \leqq n, \tag{1}
\end{equation*}
$$

and the number of l 's satisfying both

$$
\begin{equation*}
d_{l+1}<\left(1-c_{1}\right) d_{l}, \quad l \leqq n, \tag{2}
\end{equation*}
$$

are each greater than $c_{2} n$.
We shall prove Theorem 1 later. From Theorem 1 we easily deduce:
Theorem 2. For every t and all sufficiently large n the number of solutions in k and l of each of the two sets of inequalities

$$
\begin{equation*}
\left(\frac{p_{k+1}^{t}+p_{k-1}^{t}}{2}\right)^{1 / t}>p_{k}, k \leqq n ; \quad\left(\frac{p_{l+1}^{l}+p_{l-1}^{t}}{2}\right)^{1 / t}<p_{l}, l \leqq n, \tag{3}
\end{equation*}
$$

is greater than $\left(c_{2} / 2\right) n$.
Let ϵ be sufficiently small but fixed. It is well known that $p_{n}<2 \cdot n$ $\log n$. Thus the number of $k \leqq n$, with $p_{k+1}>(1+\epsilon) p_{k}$, is less than $c \log n$. Hence it follows from Theorem 1 that the number of k 's satisfying

$$
\begin{equation*}
p_{k+1}<(1+\epsilon) p_{k}, \quad d_{k}>\left(1+c_{1}\right) d_{k-1}, \quad k \leqq n, \tag{4}
\end{equation*}
$$

is greater than $\left(c_{2} / 2\right) n$. A simple calculation now shows that the primes satisfying (4) also satisfy the first inequality of (3) if $\epsilon=\epsilon\left(c_{1}\right)$ is chosen small enough. The second inequality of (3) is proved in the same way, which proves Theorem 2.
Further, we obtain, as an immediate corollary of Theorem 1, that ${ }^{2}$

[^0]
[^0]: Received by the editors October 17, 1947.
 ${ }^{1}$ P. Erdös and P. Turán, Some new questions on the distribution of primes, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 371-378.
 ${ }^{2}$ This result was also stated in the above paper.

